51 research outputs found

    Research on People’s Livelihood Concept of Socialism With Chinese Characteristics

    Get PDF
    According to 18th Communist Party Congress Report spirit of China, strengthening the construction of Socialist people’s livelihood is a major social issue which needs to be solved urgently at present. As a major part of the construction of the concept of socialism with Chinese characteristics, constructing people’s livelihood needs to absorb classical Marxist concept of people’s livelihood, summarize the development course and experience in constructing people’s livelihood of Chinese characteristic socialism, and clarify the basic provisions of the people’s livelihood idea of socialism with Chinese characteristics theoretically, so as to construct the socialist core value concept of people’s livelihood

    Investigation on the Current Status of Middle and Primary School Teachers’ Career Development Impetus in the Context of Urban and Rural Planning: Based on Districts B and Y of Chongqing City, and County R

    Get PDF
    Professional development of teachers is an issue under heated discussion in reform and development of education, while impetus for a teacher’s professional development is the key to teacher’s development. In the context of planned urban and rural development, the career impetus for the development of teachers in primary and middle school has received more and more attention. This study, adopting methods of questionnaire and interviews, conducts an investigation and analysis over the current status of career development impetus among teachers of middle and primary schools in County R, and Districts B and Y, Chongqing City. The result shows that, for the surveyed teachers, career development motivations totally are in good conditions but individually vary a lot, the impetus mainly derives from the teachers’ own need, the generation of career development impetus is restricted by paradox factors and need cooperation of the society, schools, and teachers themselves. It also indicates that, for different groups of teachers in middle schools and primary schools, there exists certain level of difference in career development impetus

    Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK

    Get PDF
    葡萄糖是生物中最基本、最主要的营养物质,它不仅是机体能量的主要来源,也是生物质合成的主要原料。因此,葡萄糖的水平对于生物体是极其重要的。然而,在生活中,体内葡萄糖水平的波动是十分常见的,这是因为我们不可能每时每刻都在摄入葡萄糖:睡一大觉、剧烈运动几个小时或者太忙了没时间吃饭,都会引起葡萄糖水平的显著下降。这时,机体能够触发一套有效的过程应对这类“不利情况”,其中最为关键的就是激活“代谢的核心调节”——AMPK。在葡萄糖水平下降时,被激活的AMPK能够迅速启动脂肪、蛋白质的分解代谢,关闭它们的合成代谢,从而起到维持机体的能量和物质代谢的平衡,弥补机体因葡萄糖不足引起的胁迫压力。那么,机体如何感受葡萄糖水平下降,并“传递”给AMPK使其激活呢?林圣彩教授课题组的这项研究正是发现了生理状态下机体感受葡萄糖水平的机制。通过研究他们发现,无论在不含葡萄糖的细胞培养条件下,还是在饥饿的低血糖的动物体内,都不能观测到AMP水平的上升,这充分说明了机体有一套尚不为人知的、独立于AMP的感应葡萄糖水平的机制。在进一步的研究中他们揭示了这一完整过程:葡萄糖水平下降将引起的葡萄糖代谢中间物——果糖1,6-二磷酸(fructose-1,6-bisphosphate)水平的下降,该过程进一步地被糖酵解通路上的代谢酶——醛缩酶(aldolase)感应,因为醛缩酶正是将含有6个碳原子的果糖1,6-二磷酸裂解成三碳糖的酶,一旦醛缩酶“吃不到”由葡萄糖衍生的果糖1,6-二磷酸,它便“翻脸”,传递给也正是林圣彩教授课题组先前发现的溶酶体途径进而激活AMPK。该过程完全不涉及AMP水平,即能量水平的变化,是一条全新的、完全建立在实际的生理情况上的通路。林圣彩教授进一步地把葡萄糖水平总结为一种“状态信号”,以区别于传统的“能量信号”。据悉,该葡萄糖感知通路的发现对开发用于治疗肥胖症,乃至延长寿命的药物具有深远的意义。【Abstract】The major energy source for most cells is glucose, from which ATP is generated via glycolysis and/or oxidative metabolism. Glucose deprivation activates AMP-activated protein kinase (AMPK)1, but it is unclear whether this activation occurs solely via changes in AMP or ADP, the classical activators of AMPK2, 3, 4, 5. Here, we describe an AMP/ADP-independent mechanism that triggers AMPK activation by sensing the absence of fructose-1,6-bisphosphate (FBP), with AMPK being progressively activated as extracellular glucose and intracellular FBP decrease. When unoccupied by FBP, aldolases promote the formation of a lysosomal complex containing at least v-ATPase, ragulator, axin, liver kinase B1 (LKB1) and AMPK, which has previously been shown to be required for AMPK activation6, 7. Knockdown of aldolases activates AMPK even in cells with abundant glucose, whereas the catalysis-defective D34S aldolase mutant, which still binds FBP, blocks AMPK activation. Cell-free reconstitution assays show that addition of FBP disrupts the association of axin and LKB1 with v-ATPase and ragulator. Importantly, in some cell types AMP/ATP and ADP/ATP ratios remain unchanged during acute glucose starvation, and intact AMP-binding sites on AMPK are not required for AMPK activation. These results establish that aldolase, as well as being a glycolytic enzyme, is a sensor of glucose availability that regulates AMPK.D.G.H. was supported by an Investigator Award from the Wellcome Trust (097726) and a Programme Grant from Cancer Research UK (C37030/A15101). S.-C.L. was supported by grants from the National Key Research and Development Project of China (2016YFA0502001) and the National Natural Science Foundation of China (#31430094, #31690101, #31571214, #31601152 and #J1310027)

    The Lysosomal v-ATPase-Ragulator Complex Is a Common Activator for AMPK and mTORC1, Acting as a Switch between Catabolism and Anabolism

    Get PDF
    林圣彩教授课题组长期致力于细胞信号转导的研究。近年来,该课题组潜心研究,不断攻关,取得了一系列重大成果,如揭示细胞如何应对生长因子缺乏的内在机理,发现了细胞自噬“路线图”、还发现了细胞如何感应“饥饿”信号AMP的信号传导通路等。其中,“发现细胞自噬‘路线图’”成果曾登上《科学》杂志,并入选2012年度“中国科学十大进展”。AMPK and mTOR play principal roles in governing metabolic programs; however, mechanisms underlying the coordination of the two inversely regulated kinases remain unclear. In this study we found, most surprisingly, that the late endosomal/lysosomal protein complex v-ATPase-Ragulator, essential for activation of mTORC1, is also required for AMPK activation. We also uncovered that AMPK is a residential protein of late endosome/lysosome. Under glucose starvation, the v-ATPase-Ragulator complex is accessible to AXIN/LKB1 for AMPK activation. Concurrently, the guanine nucleotide exchange factor (GEF) activity of Ragulator toward RAG is inhibited by AXIN, causing dissociation from endosome and inactivation of mTORC1. We have thus revealed that the v-ATPase-Ragulator complex is also an initiating sensor for energy stress and meanwhile serves as an endosomal docking site for LKB1-mediated AMPK activation by forming the v-ATPase-Ragulator-AXIN/LKB1-AMPK complex, thereby providing a switch between catabolism and anabolism. Our current study also emphasizes a general role of late endosome/lysosome in controlling metabolic programs

    miR-21-5p Suppresses Mitophagy to Alleviate Hyperoxia-Induced Acute Lung Injury by Directly Targeting PGAM5

    No full text
    Hyperoxia-induced acute lung injury (HALI) is a severe side effect of refractory hypoxemia treatment, for which no effective therapeutic strategy is available. Here, we found that the lung miR-21-5p level was significantly decreased in the rats subjected to hyperoxia. Further, we presented evidence that miR-21-5p was a crucial regulator of mitophagy and mitochondrial dysfunction. Moreover, it proved that miR-21-5p regulated hyperoxia-induced mitophagy and mitochondrial dysfunction by directly binding to the target gene PGAM5. In conclusion, for the first time, we found that miR-21-5p could directly suppress mitophagy and mitochondrial damage during HALI formation

    Spatial Distribution, Contamination Assessment and Origin of Soil Heavy Metals in the Danjiangkou Reservoir, China

    No full text
    Soil heavy metal contamination is crucial due to menacing food safety and mortal health. At present, with the fast advancement of urbanization and industrialization, heavy metals are increasingly released into the soil by anthropogenic activities, and the soil ecosystem contamination around the Danjiangkou Reservoir is directly associated with water quality security of the reservoir. In this paper, using 639 soil samples from the Danjiangkou Reservoir, Henan Province, China, we studied a variety of space distribution characteristics of heavy metals in soil. Geographic information system analysis (GIS), geo-accumulation index (Igeo), contamination factor (CF), principal component analysis (PCA) model, and positive matrix factorization (PMF) model were used together to recognize and quantify the distribution, contamination, and origin of heavy metals. We uncovered an exceptional variety of heavy metal concentrations among the tested soils: the mean arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), manganese (Mn), nickel (Ni), zinc (Zn), lead (Pb) and mercury (Hg) concentrations (14.54, 0.21, 18.69, 81.69, 898.42, 39.37, 79.50, 28.11, 0.04 mg/kg, respectively, in the topsoil (0–20 cm depth)), all exceed their background values. The mean Igeo value and CF values of these trace elements are both in descending order: Cd > Co > Mn > Ni > Pb > Zn > Cr > As > Hg. Cd was the highest contributor to the assessment of heavy metal pollution, with an average Igeo value over three, indicating that the study area is modestly contaminated by Cd. The PCA analysis and PMF model revealed three potential sources, including natural sources (PC1) for Cr, Co, Mn and Ni; agricultural sources (PC2) for Cd, Zn and Hg; and industrial emissions and transportation sources (PC3) for Pb. This study displays a map of heavy metal contamination in the eastern area topsoil of the Danjiangkou Reservoir, showing the most severe pollutant is Cd, which poses a threat to the water quality security of Danjiangkou Reservoir and provides a significant source identification for future contamination control

    Laboratory simulation of dissolved oxygen reduction and ammonia nitrogen generation in the decay stage of harmful algae bloom

    No full text
    To evaluate how the decay of bloom-forming algae affect the coastal dissolved oxygen, a laboratory simulation was conducted in terms of three typical harmful algae, Alexandrium catenella, Prorocentrum donghaiense, and Skeletonema costatum. Algae of same biomass (55 mu g/mL) were conducted in lightproof columns, and the cell density, dissolved oxygen (DO), and ammonia nitrogen of different layers were monitored at certain time series. Results show that the decomposition of algae significantly decreased the DO, and increased the ammonia nitrogen in all layers; and significant deference between different species was observed. The A. catenella treatment showed the lowest DO (average concentration of 3.4 mg/L) and the highest ammonia nitrogen (average concentration of 0.98 mg/L) at the end of test, followed by P. donghaiense; and the S. costatum showed relatively high DO and low ammonia nitrogen due to slow decay rate. Results indicate that decomposition of harmful bloom algae, especially dinoflagellate, would cause significantly DO depletion and toxic ammonia nitrogen increase, which will detrimentally affect both pelagic and benthic ecosystem

    Research on the prediction and relationship between academic attention and network attention in chemistry teaching

    No full text
    Abstract In order to adapt to the development of modern education and provide education practitioners with decision‐making suggestions, it is necessary to understand the relationship between the public's attention to basic chemistry education (BCE) and academic attention. However, many existing research is based on a single platform to study social hot information, such as Google Index, Baidu Index, Web of Science, and so on. But they ignore the relationship that exists between the Baidu Index and related academic platforms, and ignore the common information reflected between them. This paper takes advantage of the big data method, through the big data of Baidu Index and the big data obtained from China National Knowledge Internet (CNKI) database, to study the network attention and academic attention of BCE, and propose a CVS‐LSP‐GP framework. It first selects keywords through correlation analysis, secondly uses the data obtained from the first step to construct a nonlinear regression model, and finally combines the results of gray prediction to predict the academic attention of CNKI related to BCE. The research results show that the BCE is mainly affected by the micro‐lecture teaching mode, and relevant education practitioners should integrate the micro‐lecture mode into teaching for more further research and practice

    Electrochemical Corrosive Behaviors of Fe-Based Amorphous/Nanocrystalline Coating on Stainless Steel Prepared by HVOF-Sprayed

    No full text
    In this study, FeCrMnWMoSi amorphous/nanocrystalline coating was prepared on stainless steel by high-velocity oxygen fuel (HVOF) spraying. In order to thoroughly evaluate this novel material, the corrosion behaviors and corrosive film characteristics of the amorphous/nanocrystalline coating in NaCl corrosive media were studied using electrochemical measurement technologies such as potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). It was found that the corrosion resistance of Fe-based amorphous/nanocrystalline coating could be attributed to the passive film formed, which consisted of Fe, Cr, Mo, and W oxides. pH has an important influence on the corrosion resistance of amorphous/nanocrystalline coating by changing the pitting corrosion mechanism. Under neutral and acidic conditions, the corrosion mechanism of Fe-based amorphous/nanocrystalline coating was mainly local pitting corrosion. However, under strong alkaline conditions, the amorphous/nanocrystalline coating not only had pitting corrosion, but also had the active dissolution of the passive film. Therefore, the anti-corrosion performance of Fe-based amorphous/nanocrystalline coating under alkaline conditions was not as good as neutral and acidic corrosive medium

    Integrated biochemical, transcriptomic and metabolomic analyses provide insight into heat stress response in Yangtze sturgeon (Acipenser dabryanus)

    No full text
    Temperature fluctuations caused by climate change and global warming pose a great threat to various species. Most fish are particularly vulnerable to elevated temperatures. Understanding the mechanism of high-temperature tolerance in fish can be beneficial for proposing effective strategies to help fish cope with global warming. In this study, we systematically studied the effects of high temperature on Acipenser dabryanus, an ancient living fossil and flagship species of the Yangtze River, at the histological, biochemical, transcriptomic and metabolomic levels. Intestinal and liver tissues from the control groups (18 °C) and acute heat stress groups (30 °C) of A. dabryanus were sampled for histological observation and liver tissues were assessed for transcriptomic and metabolomic profiling. Histopathological analysis showed that the intestine and liver tissues were damaged after heat stress. The plasma cortisol content and the levels of oxidative stress markers (catalase/glutathione reductase) and two aminotransferases (aspartate aminotransferase/alanine aminotransferase) increased significantly in response to acute heat stress. Transcriptomic and metabolomic methods showed 6707 upregulated and 4189 downregulated genes and 64 upregulated and 78 downregulated metabolites in the heat stress group. Heat shock protein (HSP) genes showed striking changes in expression under heat stress, with 21 genes belonging to the HSP30, HSP40, HSP60, HSP70 and HSP90 families significantly upregulated by short-term heat stress. The majority of genes associated with ubiquitin and various immune-related pathways were also markedly upregulated in the heat stress group. In addition, the combined analysis of metabolites and gene profiles suggested an enhancement of amino acid metabolism and glycometabolism and the suppression of fatty acid metabolism during heat stress, which could be a potential energy conservation strategy for A. dabryanus. To the best of our knowledge, the present study represents the first attempt to reveal the mechanisms of heat stress responses in A. dabryanus, which can provide insights into improved cultivation of fish in response to global warming
    corecore