3 research outputs found

    Neurology

    No full text
    Objective To use network science to model complex diet relationships a decade before onset of dementia in a large French cohort, the 3-City Bordeaux study. Methods We identified cases of dementia incident to the baseline food frequency questionnaire over 12 years of follow-up. For each case, we randomly selected 2 controls among individuals at risk at the age at case diagnosis and matched for age at diet assessment, sex, education, and season of the survey. We inferred food networks in both cases and controls using mutual information, a measure to detect nonlinear associations, and compared food consumption patterns between groups. Results In the nested case-control study, the mean (SD) duration of follow-up and number of visits were 5.0 (2.5) vs 4.9 (2.6) years and 4.1 (1.0) vs 4.4 (0.9) for cases (n = 209) vs controls (n = 418), respectively. While there were few differences in simple, average food intakes, food networks differed substantially between cases and controls. The network in cases was focused and characterized by charcuterie as the main hub, with connections to foods typical of French southwestern diet and snack foods. In contrast, the network of controls included several disconnected subnetworks reflecting diverse and healthier food choices. Conclusion How foods are consumed (and not only the quantity consumed) may be important for dementia prevention. Differences in predementia diet networks, suggesting worse eating habits toward charcuterie and snacking, were evident years before diagnosis in this cohort. Network methods, which are designed to model complex systems, may advance our understanding of risk factors for dementia

    Understanding Tissue-Specific Gene Regulation

    No full text
    Summary: Although all human tissues carry out common processes, tissues are distinguished by gene expression patterns, implying that distinct regulatory programs control tissue specificity. In this study, we investigate gene expression and regulation across 38 tissues profiled in the Genotype-Tissue Expression project. We find that network edges (transcription factor to target gene connections) have higher tissue specificity than network nodes (genes) and that regulating nodes (transcription factors) are less likely to be expressed in a tissue-specific manner as compared to their targets (genes). Gene set enrichment analysis of network targeting also indicates that the regulation of tissue-specific function is largely independent of transcription factor expression. In addition, tissue-specific genes are not highly targeted in their corresponding tissue network. However, they do assume bottleneck positions due to variability in transcription factor targeting and the influence of non-canonical regulatory interactions. These results suggest that tissue specificity is driven by context-dependent regulatory paths, providing transcriptional control of tissue-specific processes. : Understanding gene regulation is important for many fields in biology and medicine. Sonawane et al. reconstruct and investigate regulatory networks for 38 human tissues. They find that regulation of tissue-specific function is largely independent of transcription factor expression and that tissue specificity appears to be mediated by tissue-specific regulatory network paths. Keywords: GTEx, gene regulation, regulatory networks, gene expression, transcriptome, network biology, transcriptional regulation, tissue specificity, transcription factors, network medicin
    corecore