8,091 research outputs found

    Low Pressure Ethenolysis of Renewable Methyl Oleate in a Microchemical System

    Get PDF
    A microchemical system for ethenolysis of renewable methyl oleate was developed, in which the dual-phase, microfluidic design enabled efficient diffusion of ethylene gas into liquid methyl oleate through an increased contact area. The increased mass transfer of ethylene favored the formation of desired commodity chemicals with significantly suppressed homometathesis when compared to the bulk system. In addition to higher selectivity and conversion, this system also provides the typical advantages of a microchemical system, including the possibility of convenient scale-up

    Numerical simulation of the heavy rainfall caused by a convection band over Korea: a case study on the comparison of WRF and CReSS

    Get PDF
    This study investigates the capability of two numerical models, namely the Weather Research and Forecasting (WRF) and Cloud Resolving Storm Simulator (CReSS), to simulate the heavy rainfall that occurred on September 21, 2010 in the middle of the Korean peninsula. This event was considered part of the typical rainfall caused by intense quasi-stationary convection band, leading to a large accumulated rainfall amount within a narrow area. To investigate the relevant characteristics of this heavy rainfall and the feasibility of the numerical models to simulate them, the experiments using both numerical models were designed with a focus on Korea with a horizontal grid spacing of 2 km. The initial and later boundary conditions were interpolated using the output of the mesoscale model of Japan Meteorological Agency and integration spanned the 24-h period from 2100 UTC on September 20, 2010 when the rainfall started in the Yellow Sea. Generally, the spatial distribution and temporal evolution of the rainfall simulated by CReSS are closer than those of the WRF to the in situ observations (655 stations). The WRF simulation reveals the deficiency in capturing the unusual stagnant behavior of this event. The spatial and vertical patterns of reflectivity are consistent with the rainfall pattern, supporting that strong reflectivity coincides with the convective activity that accompanies excessive rainfall. The thermodynamic structure is the main driver of the different behavior between both simulations. The higher equivalent potential temperature, deep moist absolutely unstable layer and strong veering wind shear seen in the CReSS simulation play a role in the development of a favorable environment for inducing convection.National Institute of Meteorological Research (Korea) (Grant (NIMR-2012-B-7))Korea. Meteorological Administratio

    Has globalization strengthened South Korea's national research system?

    Get PDF
    노트 : The authors acknowledge a support from the SSK (Social Science Korea) Program funded by National Research Foundation of South Korea; NRF-2010-330-B00232

    Thermoelectric spin voltage in graphene

    Get PDF
    In recent years, new spin-dependent thermal effects have been discovered in ferromagnets, stimulating a growing interest in spin caloritronics, a field that exploits the interaction between spin and heat currents. Amongst the most intriguing phenomena is the spin Seebeck effect, in which a thermal gradient gives rise to spin currents that are detected through the inverse spin Hall effect. Non-magnetic materials such as graphene are also relevant for spin caloritronics, thanks to efficient spin transport, energy-dependent carrier mobility and unique density of states. Here, we propose and demonstrate that a carrier thermal gradient in a graphene lateral spin valve can lead to a large increase of the spin voltage near to the graphene charge neutrality point. Such an increase results from a thermoelectric spin voltage, which is analogous to the voltage in a thermocouple and that can be enhanced by the presence of hot carriers generated by an applied current. These results could prove crucial to drive graphene spintronic devices and, in particular, to sustain pure spin signals with thermal gradients and to tune the remote spin accumulation by varying the spin-injection bias
    corecore