20 research outputs found
Molecular characterization of an aster yellows phytoplasma associated with proliferation of periwinkle in Malaysia
Madagascar periwinkle is a common decorative, easy growing and spreading perennial herb. Phyllody, virescence, proliferation, little leaf and yellowing symptoms were observed on periwinkle in Serdang and Banting, Selangor, Malaysia. Polymerase chain reaction (PCR) assays using P1/P7 universal phytoplasma primers and secA primers designed for identification and classification of phytoplasma, amplified 1.8 kb fragment that encompasses the entire 16S rRNA gene, the 16S - 23S intergenic spacerregion and the beginning of the 23S rRNA gene as well as the 840 bp from part of secA gene, respectively. Sequence analysis of the 16S rDNA, 16S - 23S intergenic region and the beginning of the 23S rRNA and secA gene PCR products determined that the phytoplasma strain associated withperiwinkle proliferation in Malaysia belongs to the ‘Candidatus Phytoplasma asteries’ (16Sr I-B) group of phytoplasmas. The virtual restriction fragment length polymorphism (RFLP) analysis with 10restriction endonulease enzymes revealed identical patterns to phytoplasmas members of Aster yellows phytoplasma subgroup B. A phylogenetic tree based on 16S rDNA sequences, secA gene sequences and virtual RFLP revealed that the periwinkle proliferation phytoplasma is closely related to the subgroup 16SrI-B. Periwinkle proliferation also confirmed which 16SrI-B has wide geographical distribution and host range
Screening for the optimal induction parameters for periplasmic producing interferon-α 2b in Escherichia coli
Screening for optimum induction parameters to improve the production of periplasmic interferon-α2b (PrIFN-α2b) by recombinant Escherichia coli was conducted using shake flask culture. Recombinant E. coli Rosetta-gami 2(DE3) harboring the plasmid pET26b containing IFN-α2b gene under the control of the T7lac promoter was used, where the induction was accomplished by isopropyl β-D-1- thiogalactopyranoside (IPTG). The induction parameters (inducer concentration, point of induction, induction temperature and the length of induction) were analyzed to find the suitable range to be used for further optimization process. From the analysis, narrow range of induction temperature from 16 to 30°C and IPTG lower than 2 mM were found suitable for induction of PrIFN-α2b. On the other hand, early log phase was the preferred time to initiate the induction and the length of induction was dependent on the combination of other induction parameters used.Key words: Interferon-2b (IFN-2b), induction parameter, Escherichia coli, periplasm, shake flask culture
Effect of promoter strength and signal sequence on the periplasmic expression of human interferon- ⓬b in Escherichia coli
Two plasmids, pFLAG-ATS and pET 26b(+), were studied for the periplasmic expression of recombinant human interferon-2b (IFN-2b) in Escherichia coli. The pFLAG-ATS contains ompA signal sequence and tac promoter while pET 26b(+) contains pelB signal sequence and T7lac promoter. It was observedthat periplasmic expression of IFN-2b from pET 26b(+) was around 3000 times higher than pFLAGATS. Difference in the expression level was attributed to the difference in the promoters and the signal sequences. In silico analysis of mRNA secondary structures were analyzed using Vienna RNA packageand MFOLD. The results suggested that the increase of expression would mainly due to the difference in the translation initiation associated with secondary structure of mRNA transcribed by both plasmids
Characterization of the cork oak transcriptome dynamics during acorn development
Background: Cork oak (Quercus suber L.) has a natural distribution across western Mediterranean regions and is a keystone forest tree species in these ecosystems. The fruiting phase is especially critical for its regeneration but the molecular mechanisms underlying the biochemical and physiological changes during cork oak acorn development are poorly understood. In this study, the transcriptome of the cork oak acorn, including the seed, was characterized in five stages of development, from early development to acorn maturation, to identify the dominant processes in each stage and reveal transcripts with important functions in gene expression regulation and response to water.
Results: A total of 80,357 expressed sequence tags (ESTs) were de novo assembled from RNA-Seq libraries representative of the several acorn developmental stages. Approximately 7.6 % of the total number of transcripts present in Q. suber transcriptome was identified as acorn specific. The analysis of expression profiles during development returned 2,285 differentially expressed (DE) transcripts, which were clustered into six groups. The stage of development corresponding to the mature acorn exhibited an expression profile markedly different from other stages. Approximately 22 % of the DE transcripts putatively code for transcription factors (TF) or transcriptional regulators, and were found almost equally distributed among the several expression profile clusters, highlighting their major roles in controlling the whole developmental process. On the other hand, carbohydrate metabolism, the biological pathway most represented during acorn development, was especially prevalent in mid to late stages as evidenced by enrichment analysis. We further show that genes related to response to water, water deprivation and transport were mostly represented during the early (S2) and the last stage (S8) of acorn development, when tolerance to water desiccation is possibly critical for acorn viability.
Conclusions: To our knowledge this work represents the first report of acorn development transcriptomics in oaks. The obtained results provide novel insights into the developmental biology of cork oak acorns, highlighting transcripts putatively involved in the regulation of the gene expression program and in specific processes likely essential for adaptation. It is expected that this knowledge can be transferred to other oak species of great ecological value.Fundação para a Ciência e a Tecnologi
Pooled analysis of WHO Surgical Safety Checklist use and mortality after emergency laparotomy
Background The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89.6 per cent) compared with that in countries with a middle (753 of 1242, 60.6 per cent; odds ratio (OR) 0.17, 95 per cent c.i. 0.14 to 0.21, P <0001) or low (363 of 860, 422 per cent; OR 008, 007 to 010, P <0.001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference -94 (95 per cent c.i. -11.9 to -6.9) per cent; P <0001), but the relationship was reversed in low-HDI countries (+121 (+7.0 to +173) per cent; P <0001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0.60, 0.50 to 073; P <0.001). The greatest absolute benefit was seen for emergency surgery in low- and middle-HDI countries. Conclusion Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries.Peer reviewe
Global variation in anastomosis and end colostomy formation following left-sided colorectal resection
Background
End colostomy rates following colorectal resection vary across institutions in high-income settings, being influenced by patient, disease, surgeon and system factors. This study aimed to assess global variation in end colostomy rates after left-sided colorectal resection.
Methods
This study comprised an analysis of GlobalSurg-1 and -2 international, prospective, observational cohort studies (2014, 2016), including consecutive adult patients undergoing elective or emergency left-sided colorectal resection within discrete 2-week windows. Countries were grouped into high-, middle- and low-income tertiles according to the United Nations Human Development Index (HDI). Factors associated with colostomy formation versus primary anastomosis were explored using a multilevel, multivariable logistic regression model.
Results
In total, 1635 patients from 242 hospitals in 57 countries undergoing left-sided colorectal resection were included: 113 (6·9 per cent) from low-HDI, 254 (15·5 per cent) from middle-HDI and 1268 (77·6 per cent) from high-HDI countries. There was a higher proportion of patients with perforated disease (57·5, 40·9 and 35·4 per cent; P < 0·001) and subsequent use of end colostomy (52·2, 24·8 and 18·9 per cent; P < 0·001) in low- compared with middle- and high-HDI settings. The association with colostomy use in low-HDI settings persisted (odds ratio (OR) 3·20, 95 per cent c.i. 1·35 to 7·57; P = 0·008) after risk adjustment for malignant disease (OR 2·34, 1·65 to 3·32; P < 0·001), emergency surgery (OR 4·08, 2·73 to 6·10; P < 0·001), time to operation at least 48 h (OR 1·99, 1·28 to 3·09; P = 0·002) and disease perforation (OR 4·00, 2·81 to 5·69; P < 0·001).
Conclusion
Global differences existed in the proportion of patients receiving end stomas after left-sided colorectal resection based on income, which went beyond case mix alone
Structural features specific to plant metallothioneins
The metallothionein (MT) superfamily combines a large variety of small cysteine-rich proteins from nearly all phyla of life that have the ability to coordinate various transition metal ions, including Zn(II), Cd(II), and Cu(I). The members of the plant MT family are characterized by great sequence diversity, requiring further subdivision into four subfamilies. Very peculiar and not well understood is the presence of rather long cysteine-free amino acid linkers between the cysteine-rich regions. In light of the distinct differences in sequence to MTs from other families, it seems obvious to assume that these differences will also be manifested on the structural level. This was already impressively demonstrated with the elucidation of the three-dimensional structure of the wheat E(c)-1 MT, which revealed two metal cluster arrangements previously unprecedented for any MT. However, as this structure is so far the only one available for the plant MT family, other sources of information are in high demand. In this review the focus is thus set on any structural features known, deduced, or assumed for the plant MT proteins. This includes the determination of secondary structural elements by circular dichroism, IR, and Raman spectroscopy, the analysis of the influence of the long linker regions, and the evaluation of the spatial arrangement of the sequence separated cysteine-rich regions with the aid of, e.g., limited proteolytic digestion. In addition, special attention is paid to the contents of divalent metal ions as the metal ion to cysteine ratios are important for predicting and understanding possible metal-thiolate cluster structures