96,100 research outputs found

    The two-frequency, bistatic radar-occultation method for the study of planetary ionospheres scientific reports no. 1 and no. 7

    Get PDF
    Method for study of planetary ionospheres based on radio wave propagation between earth and spacecraf

    TenTen: A New Array of Multi-TeV Imaging Cherenkov Telescopes

    Get PDF
    The exciting results from H.E.S.S. point to a new population of gamma-ray sources at energies E > 10 TeV, paving the way for future studies and new discoveries in the multi-TeV energy range. Connected with these energies is the search for sources of PeV cosmic-rays (CRs) and the study of multi-TeV gamma-ray production in a growing number of astrophysical environments. TenTen is a proposed stereoscopic array (with a suggested site in Australia) of modest-sized (10 to 30m^2) Cherenkov imaging telescopes with a wide field of view (8 to 10deg diameter) optimised for the E~10 to 100 TeV range. TenTen will achieve an effective area of ~10 km^2 at energies above 10 TeV. We outline here the motivation for TenTen and summarise key performance parameters.Comment: 4 pages, 2 figures, proceedings of the 30th ICRC, Merida, Mexico, 200

    Statistical Derivation of Basic Equations of Diffusional Kinetics in Alloys with Application to the Description of Diffusion of Carbon in Austenite

    Full text link
    Basic equations of diffusional kinetics in alloys are statistically derived using the master equation approach. To describe diffusional transformations in substitution alloys, we derive the "quasi-equilibrium" kinetic equation which generalizes its earlier versions by taking into account possible "interaction renormalization" effects. For the interstitial alloys Me-X, we derive the explicit expression for the diffusivity D of an interstitial atom X which notably differs from those used in previous phenomenological treatments. This microscopic expression for D is applied to describe the diffusion of carbon in austenite basing on some simple models of carbon-carbon interaction. The results obtained enable us to make certain conclusions about the real form of these interactions, and about the scale of the "transition state entropy" for diffusion of carbon in austenite.Comment: 26 pages, 5 postscript figures, LaTe

    Refraction at Media with Negative Refractive Index

    Full text link
    We show that an electromagnetic (EM) wave undergoes negative refraction at the interface between a positive and negative refractive index material. Finite difference time domain (FDTD) simulations are used to study the time evolution of an EM wave as it hits the interface. The wave is trapped temporarily at the interface and after a long time, the wave front moves eventually in the negative direction. This explains why causality and speed of light are not violated in spite of the negative refraction always present in a negative index material.Comment: 5 pages, 4 figures, submitted to Phys. Rev. Let

    Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    Get PDF
    Problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars are reported. Problem areas include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis, terrain modeling and path selection; and chemical analysis of specimens. These tasks are summarized: vehicle model design, mathematical model of vehicle dynamics, experimental vehicle dynamics, obstacle negotiation, electrochemical controls, remote control, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer subsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, and chromatograph model evaluation and improvement

    Timing analysis techniques at large core distances for multi-TeV gamma ray astronomy

    Full text link
    We present an analysis technique that uses the timing information of Cherenkov images from extensive air showers (EAS). Our emphasis is on distant, or large core distance gamma-ray induced showers at multi-TeV energies. Specifically, combining pixel timing information with an improved direction reconstruction algorithm, leads to improvements in angular and core resolution as large as ~40% and ~30%, respectively, when compared with the same algorithm without the use of timing. Above 10 TeV, this results in an angular resolution approaching 0.05 degrees, together with a core resolution better than ~15 m. The off-axis post-cut gamma-ray acceptance is energy dependent and its full width at half maximum ranges from 4 degrees to 8 degrees. For shower directions that are up to ~6 degrees off-axis, the angular resolution achieved by using timing information is comparable, around 100 TeV, to the on-axis angular resolution. The telescope specifications and layout we describe here are geared towards energies above 10 TeV. However, the methods can in principle be applied to other energies, given suitable telescope parameters. The 5-telescope cell investigated in this study could initially pave the way for a larger array of sparsely spaced telescopes in an effort to push the collection area to >10 km2. These results highlight the potential of a `sparse array' approach in effectively opening up the energy range above 10 TeV.Comment: Published in Astroparticle Physic

    Signatures of unstable semiclassical trajectories in tunneling

    Full text link
    It was found recently that processes of multidimensional tunneling are generally described at high energies by unstable semiclassical trajectories. We study two observational signatures related to the instability of trajectories. First, we find an additional power-law dependence of the tunneling probability on the semiclassical parameter as compared to the standard case of potential tunneling. The second signature is substantial widening of the probability distribution over final-state quantum numbers. These effects are studied using modified semiclassical technique which incorporates stabilization of the tunneling trajectories. The technique is derived from first principles. We obtain expressions for the inclusive and exclusive tunneling probabilities in the case of unstable semiclassical trajectories. We also investigate the "phase transition" between the cases of stable and unstable trajectories across certain "critical" value of energy. Finally, we derive the relation between the semiclassical probabilities of tunneling from the low-lying and highly excited initial states. This puts on firm ground a conjecture made previously in the semiclassical description of collision-induced tunneling in field theory.Comment: Journal version; 48 pages, 16 figure

    A nonlocal connection between certain linear and nonlinear ordinary differential equations/oscillators

    Get PDF
    We explore a nonlocal connection between certain linear and nonlinear ordinary differential equations (ODEs), representing physically important oscillator systems, and identify a class of integrable nonlinear ODEs of any order. We also devise a method to derive explicit general solutions of the nonlinear ODEs. Interestingly, many well known integrable models can be accommodated into our scheme and our procedure thereby provides further understanding of these models.Comment: 12 pages. J. Phys. A: Math. Gen. 39 (2006) in pres

    Fermionic current densities induced by magnetic flux in a conical space with a circular boundary

    Full text link
    We investigate the vacuum expectation value of the fermionic current induced by a magnetic flux in a (2+1)-dimensional conical spacetime in the presence of a circular boundary. On the boundary the fermionic field obeys MIT bag boundary condition. For irregular modes, a special case of boundary conditions at the cone apex is considered, when the MIT bag boundary condition is imposed at a finite radius, which is then taken to zero. We observe that the vacuum expectation values for both charge density and azimuthal current are periodic functions of the magnetic flux with the period equal to the flux quantum whereas the expectation value of the radial component vanishes. For both exterior and interior regions, the expectation values of the current are decomposed into boundary-free and boundary-induced parts. For a massless field the boundary-free part in the vacuum expectation value of the charge density vanishes, whereas the presence of the boundary induces nonzero charge density. Two integral representations are given for the boundary-free part in the case of a massive fermionic field for arbitrary values of the opening angle of the cone and magnetic flux. The behavior of the induced fermionic current is investigated in various asymptotic regions of the parameters. At distances from the boundary larger than the Compton wavelength of the fermion particle, the vacuum expectation values decay exponentially with the decay rate depending on the opening angle of the cone. We make a comparison with the results already known from the literature for some particular cases.Comment: 34 pages, 6 figure
    • …
    corecore