96,100 research outputs found
The two-frequency, bistatic radar-occultation method for the study of planetary ionospheres scientific reports no. 1 and no. 7
Method for study of planetary ionospheres based on radio wave propagation between earth and spacecraf
TenTen: A New Array of Multi-TeV Imaging Cherenkov Telescopes
The exciting results from H.E.S.S. point to a new population of gamma-ray
sources at energies E > 10 TeV, paving the way for future studies and new
discoveries in the multi-TeV energy range. Connected with these energies is the
search for sources of PeV cosmic-rays (CRs) and the study of multi-TeV
gamma-ray production in a growing number of astrophysical environments. TenTen
is a proposed stereoscopic array (with a suggested site in Australia) of
modest-sized (10 to 30m^2) Cherenkov imaging telescopes with a wide field of
view (8 to 10deg diameter) optimised for the E~10 to 100 TeV range. TenTen will
achieve an effective area of ~10 km^2 at energies above 10 TeV. We outline here
the motivation for TenTen and summarise key performance parameters.Comment: 4 pages, 2 figures, proceedings of the 30th ICRC, Merida, Mexico,
200
Statistical Derivation of Basic Equations of Diffusional Kinetics in Alloys with Application to the Description of Diffusion of Carbon in Austenite
Basic equations of diffusional kinetics in alloys are statistically derived
using the master equation approach. To describe diffusional transformations in
substitution alloys, we derive the "quasi-equilibrium" kinetic equation which
generalizes its earlier versions by taking into account possible "interaction
renormalization" effects. For the interstitial alloys Me-X, we derive the
explicit expression for the diffusivity D of an interstitial atom X which
notably differs from those used in previous phenomenological treatments. This
microscopic expression for D is applied to describe the diffusion of carbon in
austenite basing on some simple models of carbon-carbon interaction. The
results obtained enable us to make certain conclusions about the real form of
these interactions, and about the scale of the "transition state entropy" for
diffusion of carbon in austenite.Comment: 26 pages, 5 postscript figures, LaTe
Refraction at Media with Negative Refractive Index
We show that an electromagnetic (EM) wave undergoes negative refraction at
the interface between a positive and negative refractive index material. Finite
difference time domain (FDTD) simulations are used to study the time evolution
of an EM wave as it hits the interface. The wave is trapped temporarily at the
interface and after a long time, the wave front moves eventually in the
negative direction. This explains why causality and speed of light are not
violated in spite of the negative refraction always present in a negative index
material.Comment: 5 pages, 4 figures, submitted to Phys. Rev. Let
Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration
Problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars are reported. Problem areas include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis, terrain modeling and path selection; and chemical analysis of specimens. These tasks are summarized: vehicle model design, mathematical model of vehicle dynamics, experimental vehicle dynamics, obstacle negotiation, electrochemical controls, remote control, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer subsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, and chromatograph model evaluation and improvement
Timing analysis techniques at large core distances for multi-TeV gamma ray astronomy
We present an analysis technique that uses the timing information of
Cherenkov images from extensive air showers (EAS). Our emphasis is on distant,
or large core distance gamma-ray induced showers at multi-TeV energies.
Specifically, combining pixel timing information with an improved direction
reconstruction algorithm, leads to improvements in angular and core resolution
as large as ~40% and ~30%, respectively, when compared with the same algorithm
without the use of timing. Above 10 TeV, this results in an angular resolution
approaching 0.05 degrees, together with a core resolution better than ~15 m.
The off-axis post-cut gamma-ray acceptance is energy dependent and its full
width at half maximum ranges from 4 degrees to 8 degrees. For shower directions
that are up to ~6 degrees off-axis, the angular resolution achieved by using
timing information is comparable, around 100 TeV, to the on-axis angular
resolution. The telescope specifications and layout we describe here are geared
towards energies above 10 TeV. However, the methods can in principle be applied
to other energies, given suitable telescope parameters. The 5-telescope cell
investigated in this study could initially pave the way for a larger array of
sparsely spaced telescopes in an effort to push the collection area to >10 km2.
These results highlight the potential of a `sparse array' approach in
effectively opening up the energy range above 10 TeV.Comment: Published in Astroparticle Physic
Signatures of unstable semiclassical trajectories in tunneling
It was found recently that processes of multidimensional tunneling are
generally described at high energies by unstable semiclassical trajectories. We
study two observational signatures related to the instability of trajectories.
First, we find an additional power-law dependence of the tunneling probability
on the semiclassical parameter as compared to the standard case of potential
tunneling. The second signature is substantial widening of the probability
distribution over final-state quantum numbers. These effects are studied using
modified semiclassical technique which incorporates stabilization of the
tunneling trajectories. The technique is derived from first principles. We
obtain expressions for the inclusive and exclusive tunneling probabilities in
the case of unstable semiclassical trajectories. We also investigate the "phase
transition" between the cases of stable and unstable trajectories across
certain "critical" value of energy. Finally, we derive the relation between the
semiclassical probabilities of tunneling from the low-lying and highly excited
initial states. This puts on firm ground a conjecture made previously in the
semiclassical description of collision-induced tunneling in field theory.Comment: Journal version; 48 pages, 16 figure
A nonlocal connection between certain linear and nonlinear ordinary differential equations/oscillators
We explore a nonlocal connection between certain linear and nonlinear
ordinary differential equations (ODEs), representing physically important
oscillator systems, and identify a class of integrable nonlinear ODEs of any
order. We also devise a method to derive explicit general solutions of the
nonlinear ODEs. Interestingly, many well known integrable models can be
accommodated into our scheme and our procedure thereby provides further
understanding of these models.Comment: 12 pages. J. Phys. A: Math. Gen. 39 (2006) in pres
Fermionic current densities induced by magnetic flux in a conical space with a circular boundary
We investigate the vacuum expectation value of the fermionic current induced
by a magnetic flux in a (2+1)-dimensional conical spacetime in the presence of
a circular boundary. On the boundary the fermionic field obeys MIT bag boundary
condition. For irregular modes, a special case of boundary conditions at the
cone apex is considered, when the MIT bag boundary condition is imposed at a
finite radius, which is then taken to zero. We observe that the vacuum
expectation values for both charge density and azimuthal current are periodic
functions of the magnetic flux with the period equal to the flux quantum
whereas the expectation value of the radial component vanishes. For both
exterior and interior regions, the expectation values of the current are
decomposed into boundary-free and boundary-induced parts. For a massless field
the boundary-free part in the vacuum expectation value of the charge density
vanishes, whereas the presence of the boundary induces nonzero charge density.
Two integral representations are given for the boundary-free part in the case
of a massive fermionic field for arbitrary values of the opening angle of the
cone and magnetic flux. The behavior of the induced fermionic current is
investigated in various asymptotic regions of the parameters. At distances from
the boundary larger than the Compton wavelength of the fermion particle, the
vacuum expectation values decay exponentially with the decay rate depending on
the opening angle of the cone. We make a comparison with the results already
known from the literature for some particular cases.Comment: 34 pages, 6 figure
- …