68 research outputs found

    Metabolic characterization of anaerobic fungi provides a path forward for bioprocessing of crude lignocellulose

    Get PDF
    The conversion of lignocellulose-rich biomass to bio-based chemicals and higher order fuels remains a grand challenge, as single-microbe approaches often cannot drive both deconstruction and chemical production steps. In contrast, consortia based bioprocessing leverages the strengths of different microbes to distribute metabolic loads and achieve process synergy, product diversity, and bolster yields. Here, we describe a biphasic fermentation scheme that combines the lignocellulolytic action of anaerobic fungi isolated from large herbivores with domesticated microbes for bioproduction. When grown in batch culture, anaerobic fungi release excess sugars from both cellulose and crude biomass due to a wealth of highly expressed carbohydrate active enzymes (CAZymes), converting as much as 49% of cellulose to free glucose. This sugar-rich hydrolysate readily supports growth of Saccharomyces cerevisiae, which can be engineered to produce a range of value-added chemicals. Further, construction of metabolic pathways from transcriptomic data reveals that anaerobic fungi do not catabolize all sugars that their enzymes hydrolyze from biomass, leaving other carbohydrates such as galactose, arabinose, and mannose available as nutritional links to other microbes in their consortium. Although basal expression of CAZymes in anaerobic fungi is high, it is drastically amplified by cellobiose breakout products encountered during biomass hydrolysis. Overall, these results suggest that anaerobic fungi provide a nutritional benefit to the rumen microbiome, which can be harnessed to design synthetic microbial communities that compartmentalize biomass degradation and bioproduct formation

    Transcriptomic characterization of Caecomyces churrovis: a novel, non-rhizoid-forming lignocellulolytic anaerobic fungus

    Get PDF
    Anaerobic gut fungi are the primary colonizers of plant material in the rumen microbiome, but are poorly studied due to a lack of characterized isolates. While most genera of gut fungi form extensive rhizoidal networks, which likely participate in mechanical disruption of plant cell walls, fungi within the Caecomyces genus do not possess these rhizoids. Here, we describe a novel fungal isolate, Caecomyces churrovis, which forms spherical sporangia with a limited rhizoidal network yet secretes a diverse set of carbohydrate active enzymes (CAZymes) for plant cell wall hydrolysis. Despite lacking an extensive rhizoidal system, C. churrovis is capable of growth on fibrous substrates like switchgrass, reed canary grass, and corn stover, although faster growth is observed on soluble sugars. Gut fungi have been shown to use enzyme complexes (fungal cellulosomes) in which CAZymes bind to non-catalytic scaffoldins to improve biomass degradation efficiency. However, transcriptomic analysis and enzyme activity assays reveal that C. churrovis relies more on free enzymes compared to other gut fungal isolates. Only 15% of CAZyme transcripts contain non-catalytic dockerin domains in C. churrovis, compared to 30% in rhizoid-forming fungi. Furthermore, C. churrovis is enriched in GH43 enzymes that provide complementary hemicellulose degrading activities, suggesting that a wider variety of these activities are required to degrade plant biomass in the absence of an extensive fungal rhizoid network. Overall, molecular characterization of a non-rhizoid-forming anaerobic fungus fills a gap in understanding the roles of CAZyme abundance and associated degradation mechanisms during lignocellulose breakdown within the rumen microbiome

    Fertility, Living Arrangements, Care and Mobility

    Get PDF
    There are four main interconnecting themes around which the contributions in this book are based. This introductory chapter aims to establish the broad context for the chapters that follow by discussing each of the themes. It does so by setting these themes within the overarching demographic challenge of the twenty-first century – demographic ageing. Each chapter is introduced in the context of the specific theme to which it primarily relates and there is a summary of the data sets used by the contributors to illustrate the wide range of cross-sectional and longitudinal data analysed

    A deep cut ellipsoid algorithm for convex programming

    Get PDF
    This paper proposes a deep cut version of the ellipsoid algorithm for solving a general class of continuous convex programming problems. In each step the algorithm does not require more computational effort to construct these deep cuts than its corresponding central cut version. Rules that prevent some of the numerical instabilities and theoretical drawbacks usually associated with the algorithm are also provided. Moreover, for a large class of convex programs a simple proof of its rate of convergence is given and the relation with previously known results is discussed. Finally some computational results of the deep and central cut version of the algorithm applied to a min—max stochastic queue location problem are reported

    Myeloid SLC2a1-deficient murine model revealed macrophage activation and metabolic phenotype are fueled by GLUT1

    Get PDF
    Macrophages (MFs) are heterogeneous and metabolically flexible, with metabolism strongly affecting immune activation. A classic response to proinflammatory activation is increased flux through glycolysis with a downregulation of oxidative metabolism, whereas alternative activation is primarily oxidative, which begs the question of whether targeting glucose metabolism is a viable approach to control MF activation. We created a murine model of myeloid-specific glucose transporter GLUT1 (Slc2a1) deletion. Bone marrow-derived MFs (BMDM) from Slc2a1 M -/ - mice failed to uptake glucose and demonstrated reduced glycolysis and pentose phosphate pathway activity. Activated BMDMs displayed elevated metabolism of oleate and glutamine, yet maximal respiratory capacity was blunted in MF lacking GLUT1, demonstrating an incomplete metabolic reprogramming. Slc2a1 M -/ - BMDMs displayed a mixed inflammatory phenotype with reductions of the classically activated pro- and anti-inflammatory markers, yet less oxidative stress. Slc2a1 M -/ - BMDMs had reduced proinflammatory metabolites, whereas metabolites indicative of alternative activation-such as ornithine and polyamines-were greatly elevated in the absence of GLUT1. Adipose tissue MFs of lean Slc2a1 M -/ - mice had increased alternative M2-like activation marker mannose receptor CD206, yet lack of GLUT1 was not a critical mediator in the development of obesity-associated metabolic dysregulation. However, Ldlr-/ - mice lacking myeloid GLUT1 developed unstable atherosclerotic lesions. Defective phagocytic capacity in Slc2a1 M -/ - BMDMs may have contributed to unstable atheroma formation. Together, our findings suggest that although lack of GLUT1 blunted glycolysis and the pentose phosphate pathway, MF were metabolically flexible enough that inflammatory cytokine release was not dramatically regulated, yet phagocytic defects hindered MF function in chronic diseases

    A survey of solution techniques for the partially observed Markov decision process

    Full text link
    We survey several computational procedures for the partially observed Markov decision process (POMDP) that have been developed since the Monahan survey was published in 1982. The POMDP generalizes the standard, completely observed Markov decision process by permitting the possibility that state observations may be noise-corrupted and/or costly. Several computational procedures presented are convergence accelerating variants of, or approximations to, the Smallwood-Sondik algorithm. Finite-memory suboptimal design results are reported, and new research directions involving heuristic search are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44198/1/10479_2005_Article_BF02204836.pd
    • 

    corecore