21 research outputs found
Whole MILC: generalizing learned dynamics across tasks, datasets, and populations
Behavioral changes are the earliest signs of a mental disorder, but arguably,
the dynamics of brain function gets affected even earlier. Subsequently,
spatio-temporal structure of disorder-specific dynamics is crucial for early
diagnosis and understanding the disorder mechanism. A common way of learning
discriminatory features relies on training a classifier and evaluating feature
importance. Classical classifiers, based on handcrafted features are quite
powerful, but suffer the curse of dimensionality when applied to large input
dimensions of spatio-temporal data. Deep learning algorithms could handle the
problem and a model introspection could highlight discriminatory
spatio-temporal regions but need way more samples to train. In this paper we
present a novel self supervised training schema which reinforces whole sequence
mutual information local to context (whole MILC). We pre-train the whole MILC
model on unlabeled and unrelated healthy control data. We test our model on
three different disorders (i) Schizophrenia (ii) Autism and (iii) Alzheimers
and four different studies. Our algorithm outperforms existing self-supervised
pre-training methods and provides competitive classification results to
classical machine learning algorithms. Importantly, whole MILC enables
attribution of subject diagnosis to specific spatio-temporal regions in the
fMRI signal.Comment: Accepted at MICCAI 2020. arXiv admin note: substantial text overlap
with arXiv:1912.0313
Preserving Differential Privacy in Convolutional Deep Belief Networks
The remarkable development of deep learning in medicine and healthcare domain
presents obvious privacy issues, when deep neural networks are built on users'
personal and highly sensitive data, e.g., clinical records, user profiles,
biomedical images, etc. However, only a few scientific studies on preserving
privacy in deep learning have been conducted. In this paper, we focus on
developing a private convolutional deep belief network (pCDBN), which
essentially is a convolutional deep belief network (CDBN) under differential
privacy. Our main idea of enforcing epsilon-differential privacy is to leverage
the functional mechanism to perturb the energy-based objective functions of
traditional CDBNs, rather than their results. One key contribution of this work
is that we propose the use of Chebyshev expansion to derive the approximate
polynomial representation of objective functions. Our theoretical analysis
shows that we can further derive the sensitivity and error bounds of the
approximate polynomial representation. As a result, preserving differential
privacy in CDBNs is feasible. We applied our model in a health social network,
i.e., YesiWell data, and in a handwriting digit dataset, i.e., MNIST data, for
human behavior prediction, human behavior classification, and handwriting digit
recognition tasks. Theoretical analysis and rigorous experimental evaluations
show that the pCDBN is highly effective. It significantly outperforms existing
solutions
Cortical and subcortical contributions to predicting intelligence using 3D ConvNets
We present a novel framework using 3D convolutional neural networks to predict residualized fluid intelligence scores in the MICCAI 2019 Adolescent Brain Cognitive Development Neurocognitive Prediction Challenge datasets. Using gray matter segmentations from T1-weighted MRI volumes as inputs, our framework identified several cortical and subcortical brain regions where the predicted errors were lower than random guessing in the validation set (mean squared error = 71.5252), and our final outcomes (mean squared error = 70.5787 in the validation set, 92.7407 in the test set) were comprised of the median scores predicted from these regions