93 research outputs found
Plasmid Borne Resistance in Klebsiella Isolates from Kenyatta National Hospital, Nairobi, Kenya
Eighty six Klebsiella isolates from Kenyatta National Hospital and the Centre for Microbiology, Kenya Medical Research Institute, Nairobi were screened forresistance to commonly prescribed antimicrobial agents and for their plasmidcontent. Plasmids were transferred into Esherichia coli K-12 and resultingtransconjugants screened for resistance to the antimicrobial agents used onKlebsiella donors and for their plasmid content. Plasmids from the Klebsiellaisolates were also transformed into Eschericia coli and transformants analyzedfor resistance and plasmid content. Endonuclease restriction mapping was done to characterize the plasmids from Klebsiella isolates and their Eschericia coli transformants. Resistance was found to be plasmid borne and transmissible
Acquisition of naturally occurring antibody responses to recombinant protein domains of Plasmodium falciparum erythrocyte membrane protein 1
Background: Antibodies targeting variant antigens expressed on the surface of Plasmodium falciparum infected erythrocytes have been associated with protection from clinical malaria. The precise target for these antibodies is unknown. The best characterized and most likely target is the erythrocyte surface-expressed variant protein family Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). Methods: Using recombinant proteins corresponding to five domains of the expressed A4 var gene, A4 PfEMP1, the naturally occurring antibody response was assessed, by ELISA, to each domain in serum samples obtained from individuals resident in two communities of differing malaria transmission intensity on the Kenyan coast. Using flow cytometry, the correlation in individual responses to each domain with responses to intact A4-infected erythrocytes expressing A4 PfEMP1 on their surface as well as responses to two alternative parasite clones and one clinical isolate was assessed. Results: Marked variability in the prevalence of responses between each domain and between each transmission area was observed, as wasa strong correlation between age and reactivity with some but not all domains. Individual responses to each domain varied strikingly, with some individuals showing reactivity to all domains and others with no reactivity to any, this was apparent at all age groups. Evidence for possible cross-reactivity in responses to the domain DBL4γ was found. Conclusion: Individuals acquire antibodies to surface expressed domains of a highly variant protein. The finding of potential cross-reactivity in responses to one of these domains is an important initial finding in the consideration of potential vaccine targets
A longitudinal cohort study of malaria exposure and changing serostatus in a malaria endemic area of rural Tanzania.
BACKGROUND: Measurements of anti-malarial antibodies are increasingly used as a proxy of transmission intensity. Most serological surveys are based on the use of cross-sectional data that, when age-stratified, approximates historical patterns of transmission within a population. Comparatively few studies leverage longitudinal data to explicitly relate individual infection events with subsequent antibody responses. METHODS: The occurrence of seroconversion and seroreversion events for two Plasmodium falciparum asexual stage antigens (MSP-1 and AMA-1) was examined using three annual measurements of 691 individuals from a cohort of individuals in a malaria-endemic area of rural east-central Tanzania. Mixed-effect logistic regression models were employed to determine factors associated with changes in serostatus over time. RESULTS: While the expected population-level relationship between seroprevalence and disease incidence was observed, on an individual level the relationship between individual infections and the antibody response was complex. MSP-1 antibody responses were more dynamic in response to the occurrence and resolution of infection events than AMA-1, while the latter was more correlated with consecutive infections. The MSP-1 antibody response to an observed infection seemed to decay faster over time than the corresponding AMA-1 response. Surprisingly, there was no evidence of an age effect on the occurrence of a conversion or reversion event. CONCLUSIONS: While the population-level results concur with previously published sero-epidemiological surveys, the individual-level results highlight the more complex relationship between detected infections and antibody dynamics than can be analysed using cross-sectional data. The longitudinal analysis of serological data may provide a powerful tool for teasing apart the complex relationship between infection events and the corresponding immune response, thereby improving the ability to rapidly assess the success or failure of malaria control programmes
The Endogenous Th17 Response in NO<inf>2</inf>-Promoted Allergic Airway Disease Is Dispensable for Airway Hyperresponsiveness and Distinct from Th17 Adoptive Transfer
Severe, glucocorticoid-resistant asthma comprises 5-7% of patients with asthma. IL-17 is a biomarker of severe asthma, and the adoptive transfer of Th17 cells in mice is sufficient to induce glucocorticoid-resistant allergic airway disease. Nitrogen dioxide (NO2) is an environmental toxin that correlates with asthma severity, exacerbation, and risk of adverse outcomes. Mice that are allergically sensitized to the antigen ovalbumin by exposure to NO2 exhibit a mixed Th2/Th17 adaptive immune response and eosinophil and neutrophil recruitment to the airway following antigen challenge, a phenotype reminiscent of severe clinical asthma. Because IL-1 receptor (IL-1R) signaling is critical in the generation of the Th17 response in vivo, we hypothesized that the IL-1R/Th17 axis contributes to pulmonary inflammation and airway hyperresponsiveness (AHR) in NO2-promoted allergic airway disease and manifests in glucocorticoid-resistant cytokine production. IL-17A neutralization at the time of antigen challenge or genetic deficiency in IL-1R resulted in decreased neutrophil recruitment to the airway following antigen challenge but did not protect against the development of AHR. Instead, IL-1R-/- mice developed exacerbated AHR compared to WT mice. Lung cells from NO2-allergically inflamed mice that were treated in vitro with dexamethasone (Dex) during antigen restimulation exhibited reduced Th17 cytokine production, whereas Th17 cytokine production by lung cells from recipient mice of in vitro Th17-polarized OTII T-cells was resistant to Dex. These results demonstrate that the IL-1R/Th17 axis does not contribute to AHR development in NO2-promoted allergic airway disease, that Th17 adoptive transfer does not necessarily reflect an endogenously-generated Th17 response, and that functions of Th17 responses are contingent on the experimental conditions in which they are generated. © 2013 Martin et al
Toward a Surrogate Marker of Malaria Exposure: Modeling Longitudinal Antibody Measurements under Outbreak Conditions
Background: Biomarkers of exposure to Plasmodium falciparum would be a useful tool for the assessment of malaria burden and analysis of intervention and epidemiological studies. Antibodies to pre-erythrocytic antigens represent potential surrogates of exposure. Methods and Findings: In an outbreak cohort of U.S. Marines deployed to Liberia, we modeled pre- and post-deployment IgG against P. falciparum sporozoites by immunofluorescence antibody test, and both IgG and IgM against the P. falciparum circumsporozoite protein by enzyme-linked immunosorbant assay. Modeling seroconversion thresholds by a fixed ratio, linear regression or nonlinear regression produced sensitivity for identification of exposed U.S. Marines between 58-70% and specificities between 87-97%, compared with malaria-naïve U.S. volunteers. Exposure was predicted in 30-45% of the cohort. Conclusion: Each of the three models tested has merits in different studies, but further development and validation in endemic populations is required. Overall, these models provide support for an antibody-based surrogate marker of exposure to malaria
Allelic Diversity of the Plasmodium falciparum Erythrocyte Membrane Protein 1 Entails Variant-Specific Red Cell Surface Epitopes
The clonally variant Plasmodium falciparum PfEMP1 adhesin is a virulence factor and a prime target of humoral immunity. It is encoded by a repertoire of functionally differentiated var genes, which display architectural diversity and allelic polymorphism. Their serological relationship is key to understanding the evolutionary constraints on this gene family and rational vaccine design. Here, we investigated the Palo Alto/VarO and IT4/R29 and 3D7/PF13_003 parasites lines. VarO and R29 form rosettes with uninfected erythrocytes, a phenotype associated with severe malaria. They express an allelic Cys2/group A NTS-DBL1α1 PfEMP1 domain implicated in rosetting, whose 3D7 ortholog is encoded by PF13_0003. Using these three recombinant NTS-DBL1α1 domains, we elicited antibodies in mice that were used to develop monovariant cultures by panning selection. The 3D7/PF13_0003 parasites formed rosettes, revealing a correlation between sequence identity and virulence phenotype. The antibodies cross-reacted with the allelic domains in ELISA but only minimally with the Cys4/group B/C PFL1955w NTS-DBL1α. By contrast, they were variant-specific in surface seroreactivity of the monovariant-infected red cells by FACS analysis and in rosette-disruption assays. Thus, while ELISA can differentiate serogroups, surface reactivity assays define the more restrictive serotypes. Irrespective of cumulated exposure to infection, antibodies acquired by humans living in a malaria-endemic area also displayed a variant-specific surface reactivity. Although seroprevalence exceeded 90% for each rosetting line, the kinetics of acquistion of surface-reactive antibodies differed in the younger age groups. These data indicate that humans acquire an antibody repertoire to non-overlapping serotypes within a serogroup, consistent with an antibody-driven diversification pressure at the population level. In addition, the data provide important information for vaccine design, as production of a vaccine targeting rosetting PfEMP1 adhesins will require engineering to induce variant-transcending responses or combining multiple serotypes to elicit a broad spectrum of immunity
Haemoglobin C and S Role in Acquired Immunity against Plasmodium falciparum Malaria
A recently proposed mechanism of protection for haemoglobin C (HbC; β6Glu→Lys) links an abnormal display of PfEMP1, an antigen involved in malaria pathogenesis, on the surface of HbC infected erythrocytes together with the observation of reduced cytoadhesion of parasitized erythrocytes and impaired rosetting in vitro. We investigated the impact of this hypothesis on the development of acquired immunity against Plasmodium falciparum variant surface antigens (VSA) encoding PfEMP1 in HbC in comparison with HbA and HbS carriers of Burkina Faso. We measured: i) total IgG against a single VSA, A4U, and against a panel of VSA from severe malaria cases in human sera from urban and rural areas of Burkina Faso of different haemoglobin genotypes (CC, AC, AS, SC, SS); ii) total IgG against recombinant proteins of P. falciparum asexual sporozoite, blood stage antigens, and parasite schizont extract; iii) total IgG against tetanus toxoid. Results showed that the reported abnormal cell-surface display of PfEMP1 on HbC infected erythrocytes observed in vitro is not associated to lower anti- PfEMP1 response in vivo. Higher immune response against the VSA panel and malaria antigens were observed in all adaptive genotypes containing at least one allelic variant HbC or HbS in the low transmission urban area whereas no differences were detected in the high transmission rural area. In both contexts the response against tetanus toxoid was not influenced by the β-globin genotype. These findings suggest that both HbC and HbS affect the early development of naturally acquired immunity against malaria. The enhanced immune reactivity in both HbC and HbS carriers supports the hypothesis that the protection against malaria of these adaptive genotypes might be at least partially mediated by acquired immunity against malaria
Phase 1 Study of a Combination AMA1 Blood Stage Malaria Vaccine in Malian Children
Apical Membrane Antigen-1 (AMA1) is one of the leading blood stage malaria vaccine candidates. AMA1-C1/Alhydrogel consists of an equal mixture of recombinant AMA1 from FVO and 3D7 clones of P. falciparum, adsorbed onto Alhydrogel. A Phase 1 study in semi-immune adults in Mali showed that the vaccine was safe and immunogenic, with higher antibody responses in those who received the 80 microg dose. The aim of this study was to assess the safety and immunogenicity of this vaccine in young children in a malaria endemic area.This was a Phase 1 dose escalating study in 36 healthy children aged 2-3 years started in March 2006 in Donéguébougou, Mali. Eighteen children in the first cohort were randomized 2 ratio 1 to receive either 20 microg AMA1-C1/Alhydrogel or Haemophilus influenzae type b Hiberix vaccine. Two weeks later 18 children in the second cohort were randomized 2 ratio 1 to receive either 80 microg AMA1-C1/Alhydrogel or Haemophilus influenzae type b Hiberix vaccine. Vaccinations were administered on Days 0 and 28 and participants were examined on Days 1, 2, 3, 7, and 14 after vaccination and then about every two months. Results to Day 154 are reported in this manuscript.Of 36 volunteers enrolled, 33 received both vaccinations. There were 9 adverse events related to the vaccination in subjects who received AMA1-C1 vaccine and 7 in those who received Hiberix. All were mild to moderate. No vaccine-related serious or grade 3 adverse events were observed. There was no increase in adverse events with increasing dose of vaccine or number of immunizations. In subjects who received the test vaccine, antibodies to AMA1 increased on Day 14 and peaked at Day 42, with changes from baseline significantly different from subjects who received control vaccine.AMA-C1 vaccine is well tolerated and immunogenic in children in this endemic area although the antibody response was short lived.Clinicaltrials.gov NCT00341250
Assessment of exposure to Plasmodium falciparum transmission in a low endemicity area by using multiplex fluorescent microsphere-based serological assays
Background: The evaluation of malaria transmission intensity is a crucial indicator for estimating the burden of malarial disease. In this respect, entomological and parasitological methods present limitations, especially in low transmission areas. The present study used a sensitive multiplex assay to assess the exposure to Plasmodium falciparum infection in children living in an area of low endemicity. In three Senegalese villages, specific antibody (IgG) responses to 13 pre-erythrocytic P. falciparum peptides derived from Lsa1, Lsa3, Glurp, Salsa, Trap, Starp, Csp and Pf11.1 proteins were simultaneously evaluated before (June), at the peak (September) and after (December) the period of malaria transmission, in children aged from 1 to 8 years. Results: Compared to other antigens, a high percentage of seropositivity and specific antibody levels were detected with Glurp, Salsa1, Lsa3NR2, and Lsa1J antigens. The seropositivity increased with age for all tested antigens. Specific IgG levels to Glurp, Salsa1, Lsa3NR2, and Lsa1J were significantly higher in P. falciparum infected children compared to non-infected and this increase is significantly correlated with parasite density. Conclusion: The multiplex assay represents a useful technology for a serological assessment of rapid variations in malaria transmission intensity, especially in a context of low parasite rates. The use of such combined serological markers (i.e. Glurp, Lsa1, Lsa3, and Salsa) could offer the opportunity to examine these variations over time, and to evaluate the efficacy of integrated malaria control strategies
The ratio of monocytes to lymphocytes in peripheral blood correlates with increased susceptibility to clinical malaria in Kenyan children.
BACKGROUND: Plasmodium falciparum malaria remains a major cause of illness and death in sub-Saharan Africa. Young children bear the brunt of the disease and though older children and adults suffer relatively fewer clinical attacks, they remain susceptible to asymptomatic P. falciparum infection. A better understanding of the host factors associated with immunity to clinical malaria and the ability to sustain asymptomatic P. falciparum infection will aid the development of improved strategies for disease prevention. METHODS AND FINDINGS: Here we investigate whether full differential blood counts can predict susceptibility to clinical malaria among Kenyan children sampled at five annual cross-sectional surveys. We find that the ratio of monocytes to lymphocytes, measured in peripheral blood at the time of survey, directly correlates with risk of clinical malaria during follow-up. This association is evident among children with asymptomatic P. falciparum infection at the time the cell counts are measured (Hazard ratio (HR) = 2.7 (95% CI 1.42, 5.01, P = 0.002) but not in those without detectable parasitaemia (HR = 1.0 (95% CI 0.74, 1.42, P = 0.9). CONCLUSIONS: We propose that the monocyte to lymphocyte ratio, which is easily derived from routine full differential blood counts, reflects an individual's capacity to mount an effective immune response to P. falciparum infection
- …