21 research outputs found

    Acyclovir for treating varicella in otherwise healthy children and adolescents: a systematic review of randomised controlled trials

    Get PDF
    BACKGROUND: Acyclovir has the potential to shorten the course of chickenpox which may result in reduced costs and morbidity. We conducted a systematic review of randomised controlled trials that evaluated acyclovir for the treatment of chickenpox in otherwise healthy children. METHODS: MEDLINE, EMBASE, and the Cochrane Library were searched. The reference lists of relevant articles were examined and primary authors and Glaxo Wellcome were contacted to identify additional trials. Two reviewers independently screened studies for inclusion, assessed study quality using the Jadad scale and allocation concealment, and extracted data. Continuous data were converted to a weighted mean difference (WMD). Overall estimates were not calculated due to differences in the age groups studied. RESULTS: Three studies were included. Methodological quality was 3 (n = 2) and 4 (n = 1) on the Jadad scale. Acyclovir was associated with a significant reduction in the number of days with fever, from -1.0 (95% CI -1.5,-0.5) to -1.3 (95% CI -2.0,-0.6). Results were inconsistent with respect to the number of days to no new lesions, the maximum number of lesions and relief of pruritis. There were no clinically important differences between acyclovir and placebo with respect to complications or adverse effects. CONCLUSION: Acyclovir appears to be effective in reducing the number of days with fever among otherwise healthy children with chickenpox. The results were inconsistent with respect to the number of days to no new lesions, the maximum number of lesions and the relief of itchiness. The clinical importance of acyclovir treatment in otherwise healthy children remains controversial

    Genetics of Multiple Sclerosis

    Full text link

    Current perspectives of the signaling pathways directing neural crest induction

    Get PDF
    The neural crest is a migratory population of embryonic cells with a tremendous potential to differentiate and contribute to nearly every organ system in the adult body. Over the past two decades, an incredible amount of research has given us a reasonable understanding of how these cells are generated. Neural crest induction involves the combinatorial input of multiple signaling pathways and transcription factors, and is thought to occur in two phases from gastrulation to neurulation. In the first phase, FGF and Wnt signaling induce NC progenitors at the border of the neural plate, activating the expression of members of the Msx, Pax, and Zic families, among others. In the second phase, BMP, Wnt, and Notch signaling maintain these progenitors and bring about the expression of definitive NC markers including Snail2, FoxD3, and Sox9/10. In recent years, additional signaling molecules and modulators of these pathways have been uncovered, creating an increasingly complex regulatory network. In this work, we provide a comprehensive review of the major signaling pathways that participate in neural crest induction, with a focus on recent developments and current perspectives. We provide a simplified model of early neural crest development and stress similarities and differences between four major model organisms: Xenopus, chick, zebrafish, and mouse

    Restoration of mesenchymal retinal pigmented epithelial cells by TGFβ pathway inhibitors: implications for age-related macular degeneration

    Get PDF
    corecore