62 research outputs found
Proteomic profiling of neuronal mitochondria reveals modulators of synaptic architecture
Abstract Background Neurons are highly polarized cells consisting of three distinct functional domains: the cell body (and associated dendrites), the axon and the synapse. Previously, it was believed that the clinical phenotypes of neurodegenerative diseases were caused by the loss of entire neurons, however it has recently become apparent that these neuronal sub-compartments can degenerate independently, with synapses being particularly vulnerable to a broad range of stimuli. Whilst the properties governing the differential degenerative mechanisms remain unknown, mitochondria consistently appear in the literature, suggesting these somewhat promiscuous organelles may play a role in affecting synaptic stability. Synaptic and non-synaptic mitochondrial subpools are known to have different enzymatic properties (first demonstrated by Lai et al., 1977). However, the molecular basis underpinning these alterations, and their effects on morphology, has not been well documented. Methods The current study has employed electron microscopy, label-free proteomics and in silico analyses to characterize the morphological and biochemical properties of discrete sub-populations of mitochondria. The physiological relevance of these findings was confirmed in-vivo using a molecular genetic approach at the Drosophila neuromuscular junction. Results Here, we demonstrate that mitochondria at the synaptic terminal are indeed morphologically different to non-synaptic mitochondria, in both rodents and human patients. Furthermore, generation of proteomic profiles reveals distinct molecular fingerprints – highlighting that the properties of complex I may represent an important specialisation of synaptic mitochondria. Evidence also suggests that at least 30% of the mitochondrial enzymatic activity differences previously reported can be accounted for by protein abundance. Finally, we demonstrate that the molecular differences between discrete mitochondrial sub-populations are capable of selectively influencing synaptic morphology in-vivo. We offer several novel mitochondrial candidates that have the propensity to significantly alter the synaptic architecture in-vivo. Conclusions Our study demonstrates discrete proteomic profiles exist dependent upon mitochondrial subcellular localization and selective alteration of intrinsic mitochondrial proteins alters synaptic morphology in-vivo
Surveillance programs for detection and characterization of emergent pathogens and antimicrobial resistance: results from the Division of Infectious Diseases, UNIFESP
Several epidemiological changes have occurred in the pattern of nosocomial and community acquired infectious diseases during the past 25 years. Social and demographic changes possibly related to this phenomenon include a rapid population growth, the increase in urban migration and movement across international borders by tourists and immigrants, alterations in the habitats of animals and arthropods that transmit disease, as well as the raise of patients with impaired host defense abilities. Continuous surveillance programs of emergent pathogens and antimicrobial resistance are warranted for detecting in real time new pathogens, as well as to characterize molecular mechanisms of resistance. In order to become more effective, surveillance programs of emergent pathogens should be organized as a multicenter laboratory network connected to the main public and private infection control centers. Microbiological data should be integrated to guide therapy, adapting therapy to local ecology and resistance patterns. This paper presents an overview of data generated by the Division of Infectious Diseases, Federal University of São Paulo, along with its participation in different surveillance programs of nosocomial and community acquired infectious diseases.Várias alterações epidemiológicas ocorreram no perfil das doenças infecciosas hospitalares e comunitárias nos últimos 25 anos. Mudanças sociais e demográficas possivelmente relacionadas com esse fenômeno incluem o rápido crescimento populacional, o aumento da migração urbana e deslocamento através de fronteiras internacionais por turistas e imigrantes, alterações nos habitats de animais e artrópodes que transmitem doença assim como o aumento no número de pacientes com deficiências nas respostas de defesa. Os programas contínuos de vigilância de patógenos emergentes e resistência antimicrobiana são necessários para a detecção em tempo real de novos patógenos assim como para caracterizar mecanismos moleculares de resistência. Para serem mais efetivos, os programasde vigilância dos patógenos emergentes devem ser organizados em uma rede de laboratórios multicêntricos ligados aos principais centros de controle de infecções, públicos e privados. Os dados microbiológicos devem ser integrados a guias terapêuticos adaptando práticas terapêuticas à ecologia local eaos padrões de resistência. O artigo apresenta uma revisão dos dados gerados pela Disciplina de Infectologia, Universidade Federal de São Paulo (UNIFESP), contemplando sua participação nos diferentes programas de vigilância de doenças infecciosas hospitalares e adquiridas na comunidade.Universidade Federal de São Paulo (UNIFESP) Departamento de Medicina Divisão de Doenças InfecciosasUniversidade Federal de São Paulo (UNIFESP) Departamento de Microbiologia, Imunologia e ParasitologiaUNIFESP, Depto. de Medicina Divisão de Doenças InfecciosasUNIFESP, Depto. de Microbiologia, Imunologia e ParasitologiaSciEL
Transmission of Hepatitis B Core Antibody and Galactomannan Enzyme Immunoassay Positivity via Immunoglobulin Products: A Comprehensive Analysis
BACKGROUND: Therapeutic immunoglobulins are used as replacement or immunomodulatory therapy, but can transmit clinically important molecules. We investigated hepatitis B virus (HBV) antibodies and galactomannan enzyme immunoassay (GM-EIA) positivity. Detection of HBV core antibody may prompt antiviral prophylaxis when commencing therapy such as rituximab; a positive GM-EIA result prompts investigation or treatment for invasive fungal disease.
METHODS: We performed a cross-sectional analysis of HBV serology in 80 patients established (>6 months) on immunoglobulin therapy; prospective analysis of HBV serology in 16 patients commencing intravenous immunoglobulin (IVIG); and pre- and post-infusion analysis of GM-EIA in 37 patients receiving IVIG.
RESULTS: Pre-IVIG, 9 of 80 patients tested positive for HBV surface antibody and 1 of 80 tested equivocal for HBV core antibody. On IVIG, 79 of 79 tested positive for surface antibody, 37 of 80 tested positive for core antibody, and 10 of 80 tested equivocal for core antibody. There were significant differences by product, but among patients receiving products that appear to transmit core antibody, negative results correlated with lower surface antibody titers and longer time since infusion, suggesting a simple concentration effect. There was a progressive increase with each infusion in the percentage of patients testing positive for HBV core antibody among patients newly commencing IVIG. Some patients “seroreverted” to negative during therapy. Certain IVIG products tested positive for GM-EIA and there were rises in index values in corresponding patient samples from pre- to post-infusion. Overall, 5 of 37 patient samples pre-infusion and 15 of 37 samples post-infusion tested positive for GM-EIA.
CONCLUSIONS: HBV antibodies and GM-EIA positivity are common in patients receiving IVIG and confound diagnostic results
Clinical relevance of DNA microarray analyses using archival formalin-fixed paraffin-embedded breast cancer specimens
Abstract
Background
The ability of gene profiling to predict treatment response and prognosis in breast cancers has been demonstrated in many studies using DNA microarray analyses on RNA from fresh frozen tumor specimens. In certain clinical and research situations, performing such analyses on archival formalin fixed paraffin-embedded (FFPE) surgical specimens would be advantageous as large libraries of such specimens with long-term follow-up data are widely available. However, FFPE tissue processing can cause fragmentation and chemical modifications of the RNA. A number of recent technical advances have been reported to overcome these issues. Our current study evaluates whether or not the technology is ready for clinical applications.
Methods
A modified RNA extraction method and a recent DNA microarray technique, cDNA-mediated annealing, selection, extension and ligation (DASL, Illumina Inc) were evaluated. The gene profiles generated from FFPE specimens were compared to those obtained from paired fresh fine needle aspiration biopsies (FNAB) of 25 breast cancers of different clinical subtypes (based on ER and Her2/neu status). Selected RNA levels were validated using RT-qPCR, and two public databases were used to demonstrate the prognostic significance of the gene profiles generated from FFPE specimens.
Results
Compared to FNAB, RNA isolated from FFPE samples was relatively more degraded, nonetheless, over 80% of the RNA samples were deemed suitable for subsequent DASL assay. Despite a higher noise level, a set of genes from FFPE specimens correlated very well with the gene profiles obtained from FNAB, and could differentiate breast cancer subtypes. Expression levels of these genes were validated using RT-qPCR. Finally, for the first time we correlated gene expression profiles from FFPE samples to survival using two independent microarray databases. Specifically, over-expression of ANLN and KIF2C, and under-expression of MAPT strongly correlated with poor outcomes in breast cancer patients.
Conclusion
We demonstrated that FFPE specimens retained important prognostic information that could be identified using a recent gene profiling technology. Our study supports the use of FFPE specimens for the development and refinement of prognostic gene signatures for breast cancer. Clinical applications of such prognostic gene profiles await future large-scale validation studies
The emerging role of MIR-146A in the control of hematopoiesis, immune function and cancer
MicroRNA (miRs) represent a class of small non-coding regulatory RNAs playing a major role in the control of gene expression by repressing protein synthesis at the post-transcriptional level. Studies carried out during the last years have shown that some miRNAs plays a key role in the control of normal and malignant hgematopoiesis. In this review we focus on recent progress in analyzing the functional role of miR-146a in the control of normal and malignant hematopoiesis. On the other hand, this miRNA has shown to impact in the control of innate immune responses. Finally, many recent studies indicate a deregulation of miR-146 in many solid tumors and gene knockout studies indicate a role for this miRNA as a tumor suppressor
Surveillance programs for detection and characterization of emergent pathogens and antimicrobial resistance: results from the Division of Infectious Diseases, UNIFESP
Sustainable Logistics Concept—Strategic Development Plan of the Timisoara International Airport
Association of the Homeobox Transcription Factor Gene ENGRAILED 2 with Autistic Disorder in Chinese Children
Bidirectional wavelength-division multiplexing transmission over installed fibre using a simplified optical coherent access transceiver
Sentinel Nodes in Breast Cancer: Relevance of Axillary Level II Nodes and Optimal Number of Nodes that Need to Be Removed
- …
