251 research outputs found

    Mapping genetic determinants of host susceptibility to Pseudomonas aeruginosa lung infection in mice.

    Get PDF
    Background: P. aeruginosa is one of the top three causes of opportunistic human bacterial infections. The remarkable variability in the clinical outcomes of this infection is thought to be associated with genetic predisposition. However, the genes underlying host susceptibility to P. aeruginosa infection are still largely unknown. Results: As a step towards mapping these genes, we applied a genome wide linkage analysis approach to a mouse model. A large F2 intercross population, obtained by mating P. aeruginosa-resistant C3H/HeOuJ, and susceptible A/J mice, was used for quantitative trait locus (QTL) mapping. The F2 progenies were challenged with a P. aeruginosa clinical strain and monitored for the survival time up to 7 days post-infection, as a disease phenotype associated trait. Selected phenotypic extremes of the F2 distribution were genotyped with high-density single nucleotide polymorphic (SNP) markers, and subsequently QTL analysis was performed. A significant locus was mapped on chromosome 6 and was named P. aeruginosa infection resistance locus 1 (Pairl1). The most promising candidate genes, including Dok1, Tacr1, Cd207, Clec4f, Gp9, Gata2, Foxp1, are related to pathogen sensing, neutrophils and macrophages recruitment and inflammatory processes. Conclusions: We propose a set of genes involved in the pathogenesis of P. aeruginosa infection that may be explored to complement human studie

    Absorption of silicon from artesian aquifer water and its impact on bone health in postmenopausal women: a 12 week pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Decreased bone mineral density and osteoporosis in postmenopausal women represents a growing source of physical limitations and financial concerns in our aging population. While appropriate medical treatments such as bisphosphonate drugs and hormone replacement therapy exist, they are associated with serious side effects such as osteonecrosis of the jaw or increased cardiovascular risk. In addition to calcium and vitamin D supplementation, previous studies have demonstrated a beneficial effect of dietary silicon on bone health. This study evaluated the absorption of silicon from bottled artesian aquifer water and its effect on markers of bone metabolism.</p> <p>Methods</p> <p>Seventeen postmenopausal women with low bone mass, but without osteopenia or osteoporosis as determined by dual x-ray absorptiometry (DEXA) were randomized to drink one liter daily of either purified water of low-silicon content (PW) or silicon-rich artesian aquifer water (SW) (86 mg/L silica) for 12 weeks. Urinary silicon and serum markers of bone metabolism were measured at baseline and after 12 weeks and analyzed with two-sided t-tests with p < 0.05 defined as significant.</p> <p>Results</p> <p>The urinary silicon level increased significantly from 0.016 Β± 0.010 mg/mg creatinine at baseline to 0.037 Β± 0.014 mg/mg creatinine at week 12 in the SW group (p = 0.003), but there was no change for the PW group (0.010 Β± 0.004 mg/mg creatinine at baseline vs. 0.009 Β± 0.006 mg/mg creatinine at week 12, p = 0.679). The urinary silicon for the SW group was significantly higher in the silicon-rich water group compared to the purified water group (p < 0.01). NTx, a urinary marker of bone resorption did not change during the study and was not affected by the silicon water supplementation. No significant change was observed in the serum markers of bone formation compared to baseline measurements for either group.</p> <p>Conclusions</p> <p>These findings indicate that bottled water from artesian aquifers is a safe and effective way of providing easily absorbed dietary silicon to the body. Although the silicon did not affect bone turnover markers in the short-term, the mineral's potential as an alternative prevention or treatment to drug therapy for osteoporosis warrants further longer-term investigation in the future.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov Identifier: NCT01067508</p

    Sexual harassment in Dentistry: prevalence in dental school

    Get PDF
    OBJECTIVE: Sexual harassment is unlawful in all work and educational environments in most nations of the world. The goals of this study were to describe the sexual harassment prevalence and to evaluate the experiences and attitudes of undergraduate students in one dental school in Brazil. MATERIAL AND METHODS: An 18-item questionnaire was administered to 254 dental students with a completion rate of 82% (208). Students were requested to respond to questions about their background and academic level in dental school, their personal experiences with sexual harassment and their observation of someone else being sexually harassed. Bivariate statistical analyses were performed. RESULTS: Fifteen percent of the students reported being sexually harassed by a patient, by a relative of a patient or by a professor. Male students had 3 times higher probability of being sexually harassed than female student [OR=2.910 (1.113-7.611)]. Additionally, 25.4% of the students reported witnessing sexual harassment at the school environment. The majority of students did not feel professionally prepared to respond to unwanted sexual behaviors. CONCLUSION: These findings demonstrate that sexual harassment can occur in a dental school setting. There is a need for ongoing sexual harassment education programs for students and university staff. Increased knowledge of sexual harassment during graduation can better prepare dental professionals to respond to sexual harassment during their practice

    Long-term TNT and DNT contamination: 1-D modeling of natural attenuation in the vadose zone: case study, Portugal

    Get PDF
    The vadose zone of a trinitrotoluene (TNT) and dinitrotoluene (DNT) contaminated site was investigated to assess the mobility of those explosives under natural conditions. Located in the left margin of the River Tejo Basin, Portugal, the site is located on unconsolidated sediments. Wastewaters associated with the 50-year explosives production were disposed in excavated ponds, from where water would infiltrate and pollute the unsaturated and saturated parts of the local aquifers. Two boreholes were drilled to 9 m depth in such a former waste pond to investigate the contaminant's fate in the vadose zone. Sediment samples were taken every 1-2 m for analysis of the polynitroaromatics (p-NACs) and organic volatile compounds, pH, organic carbon content, cation exchange capacity and grain size analysis. The main contaminant was TNT representing >70 % of the total p-NACs concentration that peaked approximately 7 mg/kg in one borehole, even if the median in both boreholes was of similar to 1 mg/kg. DNT was 4-30 % of the total p-NACs and nitrotoluene (NT), up to 5 %. No other (volatile) organic compound was detected. The predominance of TNT as the main contaminant implies that any natural mass reduction has been inefficient to clean the site. Several 1-D model simulations of p-NACs cleaning of the vadose zone under natural conditions indicated that the most probable scenario of combined advection and partitioning will only remove TNT after 10's of years, whereas DNT and NT will hardly be removed. Such low concentrations and long times for the p-NACs removal, suggest that by now those compounds have been washed-out to a level below standard limits

    Strong interface-induced spin-orbit coupling in graphene on WS2

    Get PDF
    Interfacial interactions allow the electronic properties of graphene to be modified, as recently demonstrated by the appearance of satellite Dirac cones in the band structure of graphene on hexagonal boron nitride (hBN) substrates. Ongoing research strives to explore interfacial interactions in a broader class of materials in order to engineer targeted electronic properties. Here we show that at an interface with a tungsten disulfide (WS2) substrate, the strength of the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The induced SOI leads to a pronounced low-temperature weak anti-localization (WAL) effect, from which we determine the spin-relaxation time. We find that spin-relaxation time in graphene is two-to-three orders of magnitude smaller on WS2 than on SiO2 or hBN, and that it is comparable to the intervalley scattering time. To interpret our findings we have performed first-principle electronic structure calculations, which both confirm that carriers in graphene-on-WS2 experience a strong SOI and allow us to extract a spin-dependent low-energy effective Hamiltonian. Our analysis further shows that the use of WS2 substrates opens a possible new route to access topological states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines. Final version with expanded discussion of the relation between theory and experiments to be published in Nature Communication

    Differential Requirements of Two recA Mutants for Constitutive SOS Expression in Escherichia coli K-12

    Get PDF
    Background Repairing DNA damage begins with its detection and is often followed by elicitation of a cellular response. In E. coli, RecA polymerizes on ssDNA produced after DNA damage and induces the SOS Response. The RecA-DNA filament is an allosteric effector of LexA auto-proteolysis. LexA is the repressor of the SOS Response. Not all RecA-DNA filaments, however, lead to an SOS Response. Certain recA mutants express the SOS Response (recAC) in the absence of external DNA damage in log phase cells. Methodology/Principal Findings Genetic analysis of two recAC mutants was used to determine the mechanism of constitutive SOS (SOSC) expression in a population of log phase cells using fluorescence of single cells carrying an SOS reporter system (sulAp-gfp). SOSC expression in recA4142 mutants was dependent on its initial level of transcription, recBCD, recFOR, recX, dinI, xthA and the type of medium in which the cells were grown. SOSC expression in recA730 mutants was affected by none of the mutations or conditions tested above. Conclusions/Significance It is concluded that not all recAC alleles cause SOSC expression by the same mechanism. It is hypothesized that RecA4142 is loaded on to a double-strand end of DNA and that the RecA filament is stabilized by the presence of DinI and destabilized by RecX. RecFOR regulate the activity of RecX to destabilize the RecA filament. RecA730 causes SOSC expression by binding to ssDNA in a mechanism yet to be determined

    Risk-taking attitudes and their association with process and outcomes of cardiac care: a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prior research reveals that processes and outcomes of cardiac care differ across sociodemographic strata. One potential contributing factor to such differences is the personality traits of individuals within these strata. We examined the association between risk-taking attitudes and cardiac patients' clinical and demographic characteristics, the likelihood of undergoing invasive cardiac procedures and survival.</p> <p>Methods</p> <p>We studied a large inception cohort of patients who underwent cardiac catheterization between July 1998 and December 2001. Detailed clinical and demographic data were collected at time of cardiac catheterization and through a mailed survey one year post-catheterization. The survey included three general risk attitude items from the Jackson Personality Inventory. Patients' (n = 6294) attitudes toward risk were categorized as risk-prone versus non-risk-prone and were assessed for associations with baseline clinical and demographic characteristics, treatment received (i.e., medical therapy, coronary artery bypass graft (CABG) surgery, percutaneous coronary intervention (PCI)), and survival (to December 2005).</p> <p>Results</p> <p>2827 patients (45%) were categorized as risk-prone. Having risk-prone attitudes was associated with younger age (p < .001), male sex (p < .001), current smoking (p < .001) and higher household income (p < .001). Risk-prone patients were more likely to have CABG surgery in unadjusted (Odds Ratio [OR] = 1.21; 95% CI 1.08–1.36) and adjusted (OR = 1.18; 95% CI 1.02–1.36) models, but were no more likely to have PCI or any revascularization. Having risk-prone attitudes was associated with better survival in an unadjusted survival analysis (Hazard Ratio [HR] = 0.78 (95% CI 0.66–0.93), but not in a risk-adjusted analysis (HR = 0.92, 95% CI 0.77–1.10).</p> <p>Conclusion</p> <p>These exploratory findings suggest that patient attitudes toward risk taking may <b>contribute to </b>some of the documented differences in use of invasive cardiac procedures. An awareness of these associations could help healthcare providers as they counsel patients regarding cardiac care decisions.</p

    Separation of Recombination and SOS Response in Escherichia coli RecA Suggests LexA Interaction Sites

    Get PDF
    RecA plays a key role in homologous recombination, the induction of the DNA damage response through LexA cleavage and the activity of error-prone polymerase in Escherichia coli. RecA interacts with multiple partners to achieve this pleiotropic role, but the structural location and sequence determinants involved in these multiple interactions remain mostly unknown. Here, in a first application to prokaryotes, Evolutionary Trace (ET) analysis identifies clusters of evolutionarily important surface amino acids involved in RecA functions. Some of these clusters match the known ATP binding, DNA binding, and RecA-RecA homo-dimerization sites, but others are novel. Mutation analysis at these sites disrupted either recombination or LexA cleavage. This highlights distinct functional sites specific for recombination and DNA damage response induction. Finally, our analysis reveals a composite site for LexA binding and cleavage, which is formed only on the active RecA filament. These new sites can provide new drug targets to modulate one or more RecA functions, with the potential to address the problem of evolution of antibiotic resistance at its root
    • …
    corecore