1,103 research outputs found

    On theories of enhanced CP violation in B_s,d meson mixing

    Get PDF
    The DO collaboration has measured a deviation from the standard model (SM) prediction in the like sign dimuon asymmetry in semileptonic b decay with a significance of 3.2 sigma. We discuss how minimal flavour violating (MFV) models with multiple scalar representations can lead to this deviation through tree level exchanges of new MFV scalars. We review how the two scalar doublet model can accommodate this result and discuss some of its phenomenology. Limits on electric dipole moments suggest that in this model the coupling of the charged scalar to the right handed u-type quarks is suppressed while its coupling to the d-type right handed quarks must be enhanced. We construct an extension of the MFV two scalar doublet model where this occurs naturally.Comment: 10 pages, 7 figures, v3 final JHEP versio

    Neutrino Mass and μe+γ\mu \rightarrow e + \gamma from a Mini-Seesaw

    Full text link
    The recently proposed "mini-seesaw mechanism" combines naturally suppressed Dirac and Majorana masses to achieve light Standard Model neutrinos via a low-scale seesaw. A key feature of this approach is the presence of multiple light (order GeV) sterile-neutrinos that mix with the Standard Model. In this work we study the bounds on these light sterile-neutrinos from processes like \mu ---> e + \gamma, invisible Z-decays, and neutrinoless double beta-decay. We show that viable parameter space exists and that, interestingly, key observables can lie just below current experimental sensitivities. In particular, a motivated region of parameter space predicts a value of BR(\mu ---> e + \gamma) within the range to be probed by MEG.Comment: 1+26 pages, 7 figures. v2 JHEP version (typo's fixed, minor change to presentation, results unchanged

    Probing the charged Higgs boson at the LHC in the CP-violating type-II 2HDM

    Get PDF
    We present a phenomenological study of a CP-violating two-Higgs-doublet Model with type-II Yukawa couplings at the Large Hadron Collider (LHC). In the light of recent LHC data, we focus on the parameter space that survives the current and past experimental constraints as well as theoretical bounds on the model. Once the phenomenological scenario is set, we analyse the scope of the LHC in exploring this model through the discovery of a charged Higgs boson produced in association with a W boson, with the former decaying into the lightest neutral Higgs and a second W state, altogether yielding a b\bar b W^+W^- signature, of which we exploit the W^+W^- semileptonic decays.Comment: 37 pages, 16 figures; v2 updated treatment of LHC constraint

    Exploring novel correlations in trilepton channels at the LHC for the minimal supersymmetric inverse seesaw model

    Full text link
    We investigate signatures of the minimal supersymmetric inverse seesaw model at the large hadron collider (LHC) with three isolated leptons and large missing energy (3\ell + \mET or 2\ell + 1\tau + \mET, with \ell=e,\mu) in the final state. This signal has its origin in the decay of chargino-neutralino (\chpm1\ntrl2) pair, produced in pp collisions. The two body decays of the lighter chargino into a charged lepton and a singlet sneutrino has a characteristic decay pattern which is correlated with the observed large atmospheric neutrino mixing angle. This correlation is potentially observable at the LHC by looking at the ratios of cross sections of the trilepton + \mET channels in certain flavour specific modes. We show that even after considering possible leading standard model backgrounds these final states can lead to reasonable discovery significance at the LHC with both 7 TeV and 14 TeV center-of-mass energy.Comment: 28 pages, 9 .eps figures. 3 new figures and discussions on LHC observables added, minor modifications in text and in the abstract, 23 new references added, matches with the published version in JHE

    Flavourful Production at Hadron Colliders

    Full text link
    We ask what new states may lie at or below the TeV scale, with sizable flavour-dependent couplings to light quarks, putting them within reach of hadron colliders via resonant production, or in association with Standard Model states. In particular, we focus on the compatibility of such states with stringent flavour-changing neutral current and electric-dipole moment constraints. We argue that the broadest and most theoretically plausible flavour structure of the new couplings is that they are hierarchical, as are Standard Model Yukawa couplings, although the hierarchical pattern may well be different. We point out that, without the need for any more elaborate or restrictive structure, new scalars with "diquark" couplings to standard quarks are particularly immune to existing constraints, and that such scalars may arise within a variety of theoretical paradigms. In particular, there can be substantial couplings to a pair of light quarks or to one light and one heavy quark. For example, the latter possibility may provide a flavour-safe interpretation of the asymmetry in top quark production observed at the Tevatron. We thereby motivate searches for diquark scalars at the Tevatron and LHC, and argue that their discovery represents one of our best chances for new insight into the Flavour Puzzle of the Standard Model.Comment: 18 pp., 8 figures, references adde

    Viral Paratransgenesis in the Malaria Vector Anopheles gambiae

    Get PDF
    Paratransgenesis, the genetic manipulation of insect symbiotic microorganisms, is being considered as a potential method to control vector-borne diseases such as malaria. The feasibility of paratransgenic malaria control has been hampered by the lack of candidate symbiotic microorganisms for the major vector Anopheles gambiae. In other systems, densonucleosis viruses (DNVs) are attractive agents for viral paratransgenesis because they infect important vector insects, can be genetically manipulated and are transmitted to subsequent generations. However, An. gambiae has been shown to be refractory to DNV dissemination. We discovered, cloned and characterized the first known DNV (AgDNV) capable of infection and dissemination in An. gambiae. We developed a flexible AgDNV-based expression vector to express any gene of interest in An. gambiae using a two-plasmid helper-transducer system. To demonstrate proof-of-concept of the viral paratransgenesis strategy, we used this system to transduce expression of an exogenous gene (enhanced green fluorescent protein; EGFP) in An. gambiae mosquitoes. Wild-type and EGFP-transducing AgDNV virions were highly infectious to An. gambiae larvae, disseminated to and expressed EGFP in epidemiologically relevant adult tissues such as midgut, fat body and ovaries and were transmitted to subsequent mosquito generations. These proof-of-principle data suggest that AgDNV could be used as part of a paratransgenic malaria control strategy by transduction of anti-Plasmodium peptides or insect-specific toxins in Anopheles mosquitoes. AgDNV will also be extremely valuable as an effective and easy-to-use laboratory tool for transient gene expression or RNAi in An. gambiae

    Radiative contribution to neutrino masses and mixing in μν\mu\nuSSM

    Full text link
    In an extension of the minimal supersymmetric standard model (popularly known as the μν\mu\nuSSM), three right handed neutrino superfields are introduced to solve the μ\mu-problem and to accommodate the non-vanishing neutrino masses and mixing. Neutrino masses at the tree level are generated through RR-parity violation and seesaw mechanism. We have analyzed the full effect of one-loop contributions to the neutrino mass matrix. We show that the current three flavour global neutrino data can be accommodated in the μν\mu\nuSSM, for both the tree level and one-loop corrected analyses. We find that it is relatively easier to accommodate the normal hierarchical mass pattern compared to the inverted hierarchical or quasi-degenerate case, when one-loop corrections are included.Comment: 51 pages, 14 figures (58 .eps files), expanded introduction, other minor changes, references adde

    New physics searches at near detectors of neutrino oscillation experiments

    Full text link
    We systematically investigate the prospects of testing new physics with tau sensitive near detectors at neutrino oscillation facilities. For neutrino beams from pion decay, from the decay of radiative ions, as well as from the decays of muons in a storage ring at a neutrino factory, we discuss which effective operators can lead to new physics effects. Furthermore, we discuss the present bounds on such operators set by other experimental data currently available. For operators with two leptons and two quarks we present the first complete analysis including all relevant operators simultaneously and performing a Markov Chain Monte Carlo fit to the data. We find that these effects can induce tau neutrino appearance probabilities as large as O(10^{-4}), which are within reach of forthcoming experiments. We highlight to which kind of new physics a tau sensitive near detector would be most sensitive.Comment: 20 pages, 2 figures, REVTeX

    Limits on scalar leptoquark interactions and consequences for GUTs

    Get PDF
    A colored weak singlet scalar state with hypercharge 4/3 is one of the possible candidates for the explanation of the unexpectedly large forward-backward asymmetry in t tbar production as measured by the CDF and D0 experiments. We investigate the role of this state in a plethora of flavor changing neutral current processes and precision observables of down-quarks and charged leptons. Our analysis includes tree- and loop-level mediated observables in the K and B systems, the charged lepton sector, as well as the Z to b bbar decay width. We perform a global fit of the relevant scalar couplings. This approach can explain the (g-2)_mu anomaly while tensions among the CP violating observables in the quark sector, most notably the nonstandard CP phase (and width difference) in the Bs system cannot be fully relaxed. The results are interpreted in a class of grand unified models which allow for a light colored scalar with a mass below 1TeV. We find that the renormalizable SU(5) scenario is not compatible with our global fit, while in the SO(10) case the viability requires the presence of both the 126- and 120-dimensional representations.Comment: 26 pages, 7 figures; version as publishe
    corecore