89 research outputs found

    How to share underground reservoirs

    Get PDF
    Many resources, such as oil, gas, or water, are extracted from porous soils and their exploration is often shared among different companies or nations. We show that the effective shares can be obtained by invading the porous medium simultaneously with various fluids. Partitioning a volume in two parts requires one division surface while the simultaneous boundary between three parts consists of lines. We identify and characterize these lines, showing that they form a fractal set consisting of a single thread spanning the medium and a surrounding cloud of loops. While the spanning thread has fractal dimension 1.55±0.03{1.55\pm0.03}, the set of all lines has dimension 1.69±0.02{1.69\pm0.02}. The size distribution of the loops follows a power law and the evolution of the set of lines exhibits a tricritical point described by a crossover with a negative dimension at criticality

    hnRNP I Inhibits Notch Signaling and Regulates Intestinal Epithelial Homeostasis in the Zebrafish

    Get PDF
    Regulated intestinal stem cell proliferation and differentiation are required for normal intestinal homeostasis and repair after injury. The Notch signaling pathway plays fundamental roles in the intestinal epithelium. Despite the fact that Notch signaling maintains intestinal stem cells in a proliferative state and promotes absorptive cell differentiation in most species, it remains largely unclear how Notch signaling itself is precisely controlled during intestinal homeostasis. We characterized the intestinal phenotypes of brom bones, a zebrafish mutant carrying a nonsense mutation in hnRNP I. We found that the brom bones mutant displays a number of intestinal defects, including compromised secretory goblet cell differentiation, hyperproliferation, and enhanced apoptosis. These phenotypes are accompanied by a markedly elevated Notch signaling activity in the intestinal epithelium. When overexpressed, hnRNP I destabilizes the Notch intracellular domain (NICD) and inhibits Notch signaling. This activity of hnRNP I is conserved from zebrafish to human. In addition, our biochemistry experiments demonstrate that the effect of hnRNP I on NICD turnover requires the C-terminal portion of the RAM domain of NICD. Our results demonstrate that hnRNP I is an evolutionarily conserved Notch inhibitor and plays an essential role in intestinal homeostasis

    Spatiotemporal scaling of North American continental interior wetlands: implications for shorebird conservation

    Get PDF
    Within interior North America, erratic weather patterns and heterogeneous wetland complexes cause wide spatio-temporal variation in the resources available to migrating shorebirds. Identifying the pattern-generating components of landscape-level resources and the scales at which shorebirds respond to these patterns will better facilitate conservation efforts for these species. We constructed descriptive models that identified weather variables associated with creating the spatio-temporal patterns of shorebird habitat in ten landscapes in north-central Oklahoma. We developed a metric capable of measuring the dynamic composition and configuration of shorebird habitat in the region and used field data to empirically estimate the spatial scale at which shorebirds respond to the amount and configuration of habitat. Precipitation, temperature, solar radiation and wind speed best explained the incidence of wetland habitat, but relationships varied among wetland types. Shorebird occurrence patterns were best explained by habitat density estimates at a 1.5 km scale. This model correctly classified 86 % of shorebird observations. At this scale, when habitat density was low, shorebirds occurred in 5 % of surveyed habitat patches but occurrence reached 60 % when habitat density was high. Our results suggest scale dependence in the habitat-use patterns of migratory shorebirds. We discuss potential implications of our results and how integrating this information into conservation efforts may improve conservation strategies and management practices

    Transfusion-transmitted infections

    Get PDF
    Although the risk of transfusion-transmitted infections today is lower than ever, the supply of safe blood products remains subject to contamination with known and yet to be identified human pathogens. Only continuous improvement and implementation of donor selection, sensitive screening tests and effective inactivation procedures can ensure the elimination, or at least reduction, of the risk of acquiring transfusion transmitted infections. In addition, ongoing education and up-to-date information regarding infectious agents that are potentially transmitted via blood components is necessary to promote the reporting of adverse events, an important component of transfusion transmitted disease surveillance. Thus, the collaboration of all parties involved in transfusion medicine, including national haemovigilance systems, is crucial for protecting a secure blood product supply from known and emerging blood-borne pathogens

    Holding it together: rapid evolution and positive selection in the synaptonemal complex of Drosophila

    Get PDF
    Background The synaptonemal complex (SC) is a highly conserved meiotic structure that functions to pair homologs and facilitate meiotic recombination in most eukaryotes. Five Drosophila SC proteins have been identified and localized within the complex: C(3)G, C(2)M, CONA, ORD, and the newly identified Corolla. The SC is required for meiotic recombination in Drosophila and absence of these proteins leads to reduced crossing over and chromosomal nondisjunction. Despite the conserved nature of the SC and the key role that these five proteins have in meiosis in D. melanogaster, they display little apparent sequence conservation outside the genus. To identify factors that explain this lack of apparent conservation, we performed a molecular evolutionary analysis of these genes across the Drosophila genus. Results For the five SC components, gene sequence similarity declines rapidly with increasing phylogenetic distance and only ORD and C(2)M are identifiable outside of the Drosophila genus. SC gene sequences have a higher dN/dS (ω) rate ratio than the genome wide average and this can in part be explained by the action of positive selection in almost every SC component. Across the genus, there is significant variation in ω for each protein. It further appears that ω estimates for the five SC components are in accordance with their physical position within the SC. Components interacting with chromatin evolve slowest and components comprising the central elements evolve the most rapidly. Finally, using population genetic approaches, we demonstrate that positive selection on SC components is ongoing. Conclusions SC components within Drosophila show little apparent sequence homology to those identified in other model organisms due to their rapid evolution. We propose that the Drosophila SC is evolving rapidly due to two combined effects. First, we propose that a high rate of evolution can be partly explained by low purifying selection on protein components whose function is to simply hold chromosomes together. We also propose that positive selection in the SC is driven by its sex-specificity combined with its role in facilitating both recombination and centromere clustering in the face of recurrent bouts of drive in female meiosis

    Cutaneous lesions of the nose

    Get PDF
    Skin diseases on the nose are seen in a variety of medical disciplines. Dermatologists, otorhinolaryngologists, general practitioners and general plastic and dermatologic surgeons are regularly consulted regarding cutaneous lesions on the nose. This article is the second part of a review series dealing with cutaneous lesions on the head and face, which are frequently seen in daily practice by a dermatologic surgeon. In this review, we focus on those skin diseases on the nose where surgery or laser therapy is considered a possible treatment option or that can be surgically evaluated
    • …
    corecore