39 research outputs found

    Simulation-based analysis of micro-robots swimming at the center and near the wall of circular mini-channels

    Get PDF
    Swimming micro robots have great potential in biomedical applications such as targeted drug delivery, medical diagnosis, and destroying blood clots in arteries. Inspired by swimming micro organisms, micro robots can move in biofluids with helical tails attached to their bodies. In order to design and navigate micro robots, hydrodynamic characteristics of the flow field must be understood well. This work presents computational fluid dynamics (CFD) modeling and analysis of the flow due to the motion of micro robots that consist of magnetic heads and helical tails inside fluid-filled channels akin to bodily conduits; special emphasis is on the effects of the radial position of the robot. Time-averaged velocities, forces, torques, and efficiency of the micro robots placed in the channels are analyzed as functions of rotation frequency, helical pitch (wavelength) and helical radius (amplitude) of the tail. Results indicate that robots move faster and more efficiently near the wall than at the center of the channel. Forces acting on micro robots are asymmetrical due to the chirality of the robot’s tail and its motion. Moreover, robots placed near the wall have a different flow pattern around the head when compared to in-center and unbounded swimmers. According to simulation results, time-averaged for-ward velocity of the robot agrees well with the experimental values measured previously for a robot with almost the same dimensions

    Experimental observation of flow fields around active Janus spheres

    Get PDF
    The phoretic mechanisms at stake in the propulsion of asymmetric colloids have been the subject of debates during the past years. In particular, the importance of electrokinetic effects on the motility of Pt-PS Janus sphere was recently discussed. Here, we probe the hydrodynamic flow field around a catalytically active colloid using particle tracking velocimetry both in the freely swimming state and when kept stationary with an external force. Our measurements provide information about the fluid velocity in the vicinity of the surface of the colloid, and confirm a mechanism for propulsion that was proposed recently. In addition to offering a unified understanding of the nonequilibrium interfacial transport processes at stake, our results open the way to a thorough description of the hydrodynamic interactions between such active particles and understanding their collective dynamics

    Imagining the thinking machine: Technological myths and the rise of artificial intelligence

    No full text
    This paper was accepted for publication in the journal Convergence and the definitive published version is available at https://doi.org/10.1177/1354856517715164.This article discusses the role of technological myths in the development of Artificial Intelligence (AI) technologies from 1950s to the early 1970s. It shows how the rise of AI was accompanied by the construction of a powerful cultural myth: the creation of a thinking machine, which would be able to perfectly simulate the cognitive faculties of the human mind. Based on a content analysis of articles on Artificial Intelligence published in two magazines, the Scientific American and the New Scientist, which were aimed at a broad readership of scientists, engineers, and technologists, three dominant patterns in the construction of the AI myth are identified: (1) the recurrence of analogies and discursive shifts, by which ideas and concepts from other fields were employed to describe the functioning of AI technologies; (2) a rhetorical use of the future, imagining that present shortcomings and limitations will shortly be overcome; (3) the relevance of controversies around the claims of AI, which we argue should be considered as an integral part of the discourse surrounding the AI myth
    corecore