21 research outputs found

    Maternal condition but not corticosterone is linked to brood sex ratio adjustment in a passerine bird

    Get PDF
    There is evidence of offspring sex ratio adjustment in a range of species, but the potential mechanisms remain largely unknown. Elevated maternal corticosterone (CORT) is associated with factors that can favour brood sex ratio adjustment, such as reduced maternal condition, food availability and partner attractiveness. Therefore, the steroid hormone has been suggested to play a key role in sex ratio manipulation. However, despite correlative and causal evidence CORT is linked to sex ratio manipulation in some avian species, the timing of adjustment varies between studies. Consequently, whether CORT is consistently involved in sex-ratio adjustment, and how the hormone acts as a mechanism for this adjustment remains unclear. Here we measured maternal baseline CORT and body condition in free-living blue tits (Cyanistes caeruleus) over three years and related these factors to brood sex ratio and nestling quality. In addition, a non-invasive technique was employed to experimentally elevate maternal CORT during egg laying, and its effects upon sex ratio and nestling quality were measured. We found that maternal CORT was not correlated with brood sex ratio, but mothers with elevated CORT fledged lighter offspring. Also, experimental elevation of maternal CORT did not influence brood sex ratio or nestling quality. In one year, mothers in superior body condition produced male biased broods, and maternal condition was positively correlated with both nestling mass and growth rate in all years. Unlike previous studies maternal condition was not correlated with maternal CORT. This study provides evidence that maternal condition is linked to brood sex ratio manipulation in blue tits. However, maternal baseline CORT may not be the mechanistic link between the maternal condition and sex ratio adjustment. Overall, this study serves to highlight the complexity of sex ratio adjustment in birds and the difficulties associated with identifying sex biasing mechanisms

    Geographic variation in breeding system and environment predicts melanin-based plumage ornamentation of male and female Kentish plovers

    Get PDF
    Sexual selection determines the elaboration of morphological and behavioural traits and thus drives the evolution of phenotypes. Sexual selection on males and females can differ between populations, especially when populations exhibit different breeding systems. A substantial body of literature describes how breeding systems shape ornamentation across species, with a strong emphasis on male ornamentation and female preference. However, whether breeding system predicts ornamentation within species and whether similar mechanisms as in males also shape the phenotype of females remains unclear. Here, we investigate how different breeding systems are associated with male and female ornamentation in five geographically distinct populations of Kentish plovers Charadrius alexandrinus. We predicted that polygamous populations would exhibit more elaborate ornaments and stronger sexual dimorphism than monogamous populations. By estimating the size and intensity of male (n = 162) and female (n = 174) melanin-based plumage ornaments, i.e. breast bands and ear coverts, we show that plumage ornamentation is predicted by breeding system in both sexes. A difference in especially male ornamentation between polygamous (darker and smaller ornaments) and monogamous (lighter and larger) populations causes the greatest sexual dimorphism to be associated with polygamy. The non-social environment, however, may also influence the degree of ornamentation, for instance through availability of food. We found that, in addition to breeding system, a key environmental parameter, rainfall, predicted a seasonal change of ornamentation in a sex-specific manner. Our results emphasise that to understand the phenotype of animals, it is important to consider both natural and sexual selection acting on both males and females

    The importance of the altricial – precocial spectrum for social complexity in mammals and birds:A review

    Get PDF
    Various types of long-term stable relationships that individuals uphold, including cooperation and competition between group members, define social complexity in vertebrates. Numerous life history, physiological and cognitive traits have been shown to affect, or to be affected by, such social relationships. As such, differences in developmental modes, i.e. the ‘altricial-precocial’ spectrum, may play an important role in understanding the interspecific variation in occurrence of social interactions, but to what extent this is the case is unclear because the role of the developmental mode has not been studied directly in across-species studies of sociality. In other words, although there are studies on the effects of developmental mode on brain size, on the effects of brain size on cognition, and on the effects of cognition on social complexity, there are no studies directly investigating the link between developmental mode and social complexity. This is surprising because developmental differences play a significant role in the evolution of, for example, brain size, which is in turn considered an essential building block with respect to social complexity. Here, we compiled an overview of studies on various aspects of the complexity of social systems in altricial and precocial mammals and birds. Although systematic studies are scarce and do not allow for a quantitative comparison, we show that several forms of social relationships and cognitive abilities occur in species along the entire developmental spectrum. Based on the existing evidence it seems that differences in developmental modes play a minor role in whether or not individuals or species are able to meet the cognitive capabilities and requirements for maintaining complex social relationships. Given the scarcity of comparative studies and potential subtle differences, however, we suggest that future studies should consider developmental differences to determine whether our finding is general or whether some of the vast variation in social complexity across species can be explained by developmental mode. This would allow a more detailed assessment of the relative importance of developmental mode in the evolution of vertebrate social systems

    Controlling Spatiotemporal Mechanics of Supramolecular Hydrogel Networks with Highly Branched Cucurbit[8]uril Polyrotaxanes

    No full text
    Attempts to rationally tune the macroscopic mechanical performance of supramolecular hydrogel networks through noncovalent molecular interactions have led to a wide variety of supramolecular materials with desirable functions. While the viscoelastic properties are dominated by temporal hierarchy (crosslinking kinetics), direct mechanistic studies on spatiotemporal control of supramolecular hydrogel networks, based on host-guest chemistry, have not yet been established. Here, supramolecular hydrogel networks assembled from highly branched cucurbit[8]uril-threaded polyrotaxanes (HBP-CB[8] ) and naphthyl-functionalized hydroxyethyl cellulose (HECNp) are reported, exploiting the CB[8] host-guest complexation. Mechanically locking CB[8] host molecules onto a highly branched hydrophilic polymer backbone, through selective binary complexation with viologen derivatives, dramatically increases the solubility of CB[8]. Additionally, the branched architecture enables tuning of material dynamics of the supramolecular hydrogel networks via both topological (spatial hierarchy) and kinetic (temporal hierarchy) control. Relationship between macroscopic properties (time- and temperature-dependent rheological properties, thermal stability, and reversibility), spatiotemporal hierarchy, and chain dynamics of the highly branched polyrotaxane hydrogel networks is investigated in detail. Such kind of tuning of material mechanics through spatiotemporal hierarchy improves our understanding of the challenging relationship between design of supramolecular polymeric materials and their complex viscoelasticity, and also highlights a facile strategy to engineer dynamic supramolecular materials

    Locus-Specific Microemulsion Catalysts for Sulfur Mustard (HD) Chemical Warfare Agent Decontamination

    No full text
    The rates of catalytic oxidative decontamination of the chemical warfare agent (CWA) sulfur mustard (HD, bis(2-chlororethyl) sulfide) and a range (chloroethyl) sulfide simulants of variable lipophilicity have been examined using a hydrogen peroxide-based microemulsion system. SANS (small-angle neutron scattering), SAXS (small-angle X-ray scattering), PGSE-NMR (pulsed-gradient spin−echo NMR), fluorescence quenching, and electrospray mass spectroscopy (ESI-MS) were implemented to examine the distribution of HD, its simulants, and their oxidation/hydrolysis products in a model oil-in-water microemulsion. These measurements not only present a means of interpreting decontamination rates but also a rationale for the design of oxidation catalysts for these toxic materials. Here we show that by localizing manganese−Schiff base catalysts at the oil droplet−water interface or within the droplet core, a range of (chloroethyl) sulfides, including HD, spanning some 7 orders of octanol−water partition coefficient (Kow), may be oxidized with equal efficacy using dilute (5 wt. % of aqueous phase) hydrogen peroxide as a noncorrosive, environmentally benign oxidant (e.g., t1/2 (HD) 18 s, (2-chloroethyl phenyl sulfide, C6H5SCH2CH2Cl) 15 s, (thiodiglycol, S(CH2CH2OH)2) 19 s {20 °C}). Our observations demonstrate that by programming catalyst lipophilicity to colocalize catalyst and substrate, the inherent compartmentalization of the microemulsion can be exploited to achieve enhanced rates of reaction or to exert control over product selectivity. A combination of SANS, ESI-MS and fluorescence quenching measurements indicate that the enhanced catalytic activity is due to the locus of the catalyst and not a result of partial hydrolysis of the substrate

    Assessment of aquifer karstification degree in some karst sites on Java Island, Indonesia

    No full text
    This research was conducted on several springs and underground rivers in two different karst areas: the Gunung Sewu karst in the southern part of Java Island and the Rengel karst in northern Java. The objective was to determine the spatial degree of karstification in springs and underground rivers in these areas using available data on hydrograph recession. Hydrograph recession curves from eight water-level gauges in springs and underground rivers were analyzed and classified for each location based on quantitative parameters to express individual groundwater flow sub-regimes. Discharge was used to generate recessional equations, and these were related to karstification degree on a qualitative scale varying from 1 to 10. The karstification degree calculated using selected data on flood recession ranged from a low value of 3.7 in the Petoyan spring to a high value of 7.7 in the Bribin river. The value of 3.7 (low) indicates that the aquifer is dominated by a network of uniform small-sized voids (diffuse and fissure), the majority of which are open with minimal macro-fissure karst channels. Meanwhile, the value of 7.7 (high) indicates highly developed karstification of the aquifer, which is formed by large open conduits (karst channels). Furthermore, the general degree of karstification in Gunung Sewu is more developed than in the karst region of Rengel, except in the Petoyan spring, located in the western part of the Gunung Sewu karst region. Interestingly, the degree of karstification in Gunung Sewu varied. This may be due to differences in variable surface geomorphology, which is controlled by the differing solubility and thickness of the limestone beds. This study also indicates that there is a fairly strong positive relationship between the degree of karstification and the extent of the catchment area of springs

    Karst flow processes explored through analysis of long-term unsaturated-zone discharge hydrochemistry: a 10-year study in Rustrel, France

    Get PDF
    The unsaturated zone of karst aquifers influences the dynamics and the chemistry of water. Because of a lack of direct access, other than via caves, flows in the aquifer matrix and the smallest conduits remain poorly characterized. The few artificial underground structures in the unsaturated karst provide a rare opportunity to study the variety of flow processes. At the low noise underground research laboratory (Laboratoire Souterrain Ă  Bas Bruit, LSBB) in Rustrel (France), 12 variables (temperature, pH, electrical conductivity, alkalinity, major anions and cations, total organic carbon) have been monitored on 12 perennial or temporary flows and leakages over a 10-year period covering contrasting climatic periods. This unique dataset of 1,135 samples has been used to discriminate, identify, and rank the processes associated with the hydrochemical variability of these different types of flows. A principal component analysis and a hierarchical cluster analysis, using mean values and standard deviation of the flow along the principal components, were performed. The results indicate that seasonal variability, mean water residence time, and the depth of acquisition of the chemical characteristics are the main factors of the variability of chemistry at the monitored flow points. Distinguished clusters highlight the great diversity of flows and processes occurring in the fine pathways that may be neighboring the large and structured fractures and conduits. Long-term monitoring with various climatic conditions appears to be a useful tool for assessing this diversity
    corecore