86,928 research outputs found

    Meson decay in the Fock-Tani Formalism

    Full text link
    The Fock-Tani formalism is a first principle method to obtain effective interactions from microscopic Hamiltonians. Usually this formalism was applied to scattering, here we introduced it to calculate partial decay widths for mesons.Comment: Presented at HADRON05 XI. "International Conference on Hadron Spectroscopy" Rio de Janeiro, Brazil, August 21 to 26, 200

    Glueball-glueball scattering in a constituent gluon model

    Get PDF
    In this work we use a mapping technique to derive in the context of a constituent gluon model an effective Hamiltonian that involves explicit gluon degrees of freedom. We study glueballs with two gluons using the Fock-Tani formalism. In the present work we consider two possibilities for 0++0^{++}: (i) as a pure ssˉs\bar{s} and calculate, in the context of a quark interchange picture, the cross-section; (ii) as a glueball where a new calculation for this cross-section is made, in the context of the constituent gluon model, with gluon interchange.Comment: Proceedings of the International Workshop IX Hadron Physics and VII Relativistic Aspects of Nuclear Physics (HADRON-RANP 2004

    Competing impurities and reentrant magnetism in La(2-x)Sr(x)Cu(1-z)Zn(z)O(4) revisited. The role of the Dzyaloshinskii-Moriya and XY anisotropies

    Get PDF
    We study the order-from-disorder transition and reentrant magnetism in La(2-x)Sr(x)Cu(1-z)Zn(z)O(4) within the framework of a long-wavelength nonlinear sigma model that properly incorporates the Dzyaloshinskii-Moriya and XY anisotropies. Doping with nonmagnetic impurities, such as Zn, is considered according to classical percolation theory, whereas the effect of Sr, which introduces charge carriers into the CuO(2) planes, is described as a dipolar frustration of the antiferromagnetic order. We calculate several magnetic, thermodynamic, and spectral properties of the system, such as the antiferromagnetic order parameter, the Neel temperature, the spin-stiffness, and the anisotropy gaps, as well as their evolution with both Zn and Sr doping. We explain the nonmonotonic and reentrant behavior experimentally observed for T_N by Hucker et al. in Phys. Rev. B 59, R725 (1999), as resulting from the reduction, due to the nonmagnetic impurities, of the dipolar frustration induced by the charge carriers (order-from-disorder). Furthermore, we find a similar nonmonotonic and reentrant behavior for all the other observables studied. Most remarkably, our results show that while for x=2% and z=0 the Dzyaloshinskii-Moriya gap \Delta_{DM}=0, for z=15% it is approximately \Delta_{DM} = 7.5 cm^(-1). The later is larger than the lowest low-frequency cutoff for Raman spectroscopy (~ 5 cm^(-1)), and could thus be observed in one-magnon Raman scattering.Comment: 13 pages, 10 figure

    Domain wall description of superconductivity

    Get PDF
    In the present work we shall address the issue of electrical conductivity in superconductors in the perspective of superconducting domain wall solutions in the realm of field theory. We take our set up made out of a dynamical complex scalar field coupled to gauge field to be responsible for superconductivity and an extra scalar real field that plays the role of superconducting domain walls. The temperature of the system is interpreted through the fact that the soliton following accelerating orbits is a Rindler observer experiencing a thermal bath.Comment: 9 pages, 5 figures, Latex. Version to appear in PL

    A laser technique for characterizing the geometry of plant canopies

    Get PDF
    The interception of solar power by the canopy is investigated as a function of solar zenith angle (time), component of the canopy, and depth into the canopy. The projected foliage area, cumulative leaf area, and view factors within the canopy are examined as a function of the same parameters. Two systems are proposed that are capable of describing the geometrical aspects of a vegetative canopy and of operation in an automatic mode. Either system would provide sufficient data to yield a numerical map of the foliage area in the canopy. Both systems would involve the collection of large data sets in a short time period using minimal manpower

    Testing Asteroseismic Radii of Dwarfs and Subgiants with Kepler and Gaia

    Get PDF
    We test asteroseismic radii of Kepler main-sequence and subgiant stars by deriving their parallaxes which are compared with those of the first Gaia data release. We compute radii based on the asteroseismic scaling relations as well as by fitting observed oscillation frequencies to stellar models for a subset of the sample, and test the impact of using effective temperatures from either spectroscopy or the infrared flux method. An offset of 3%, showing no dependency on any stellar parameters, is found between seismic parallaxes derived from frequency modelling and those from Gaia. For parallaxes based on radii from the scaling relations, a smaller offset is found on average; however, the offset becomes temperature dependent which we interpret as problems with the scaling relations at high stellar temperatures. Using the hotter infrared flux method temperature scale, there is no indication that radii from the scaling relations are inaccurate by more than about 5%. Taking the radii and masses from the modelling of individual frequencies as reference values, we seek to correct the scaling relations for the observed temperature trend. This analysis indicates that the scaling relations systematically overestimate radii and masses at high temperatures, and that they are accurate to within 5% in radius and 13% in mass for main-sequence stars with temperatures below 6400 K. However, further analysis is required to test the validity of the corrections on a star-by-star basis and for more evolved stars.Comment: 12 pages, 9 figures. Accepted for publication in MNRA
    corecore