1,494 research outputs found

    Nature-inspired Cuckoo Search Algorithm for Side Lobe Suppression in a Symmetric Linear Antenna Array

    Get PDF
    In this paper, we proposed a newly modified cuckoo search (MCS) algorithm integrated with the Roulette wheel selection operator and the inertia weight controlling the search ability towards synthesizing symmetric linear array geometry with minimum side lobe level (SLL) and/or nulls control. The basic cuckoo search (CS) algorithm is primarily based on the natural obligate brood parasitic behavior of some cuckoo species in combination with the Levy flight behavior of some birds and fruit flies. The CS metaheuristic approach is straightforward and capable of solving effectively general N-dimensional, linear and nonlinear optimization problems. The array geometry synthesis is first formulated as an optimization problem with the goal of SLL suppression and/or null prescribed placement in certain directions, and then solved by the newly MCS algorithm for the optimum element or isotropic radiator locations in the azimuth-plane or xy-plane. The study also focuses on the four internal parameters of MCS algorithm specifically on their implicit effects in the array synthesis. The optimal inter-element spacing solutions obtained by the MCS-optimizer are validated through comparisons with the standard CS-optimizer and the conventional array within the uniform and the Dolph-Chebyshev envelope patterns using MATLABTM. Finally, we also compared the fine-tuned MCS algorithm with two popular evolutionary algorithm (EA) techniques include particle swarm optimization (PSO) and genetic algorithms (GA)

    Optimal boundary control of a linear parabolic evolution system

    Get PDF
    We consider the optimal boundary control of a linear parabolic boundary value problem. Firstly, the problem is formulated as an optimization problem with the system state governed by a parabolic partial differential equation. Based on the formulation for the variation of the cost functional, a gradient-type optimization technique utilizing the finite element method is then developed to solve the constrained optimization problem. Finally, a numerical example is given and the results show that the method of solution is robust

    AGRICULTURAL VALUE ADDED: PROSPECTS FOR NORTH DAKOTA

    Get PDF
    Introduction: This report provides an overview of the important factors affecting investments in agricultural value-added ventures. The introductory section outlines current research on factors important in the location of economic activity. Research applied to specific agricultural value-added ventures, such as food manufacturing and livestock feeding and finishing operations, are discussed. A listing of resources available to entrepreneurs considering value-added investments concludes the introductory section. Following the introductory section are short overviews of industries that already have, or may have, potential for increasing economic activity in the state. All are based on the important foundation of agriculture in the state's economy or upon the natural resource base giving the state a comparative advantage in investments in alternative energy or resource-based recreation.Agribusiness,

    Operator-Based Truncation Scheme Based on the Many-Body Fermion Density Matrix

    Full text link
    In [S. A. Cheong and C. L. Henley, cond-mat/0206196 (2002)], we found that the many-particle eigenvalues and eigenstates of the many-body density matrix ρB\rho_B of a block of BB sites cut out from an infinite chain of noninteracting spinless fermions can all be constructed out of the one-particle eigenvalues and one-particle eigenstates respectively. In this paper we developed a statistical-mechanical analogy between the density matrix eigenstates and the many-body states of a system of noninteracting fermions. Each density matrix eigenstate corresponds to a particular set of occupation of single-particle pseudo-energy levels, and the density matrix eigenstate with the largest weight, having the structure of a Fermi sea ground state, unambiguously defines a pseudo-Fermi level. We then outlined the main ideas behind an operator-based truncation of the density matrix eigenstates, where single-particle pseudo-energy levels far away from the pseudo-Fermi level are removed as degrees of freedom. We report numerical evidence for scaling behaviours in the single-particle pseudo-energy spectrum for different block sizes BB and different filling fractions \nbar. With the aid of these scaling relations, which tells us that the block size BB plays the role of an inverse temperature in the statistical-mechanical description of the density matrix eigenstates and eigenvalues, we looked into the performance of our operator-based truncation scheme in minimizing the discarded density matrix weight and the error in calculating the dispersion relation for elementary excitations. This performance was compared against that of the traditional density matrix-based truncation scheme, as well as against a operator-based plane wave truncation scheme, and found to be very satisfactory.Comment: 22 pages in RevTeX4 format, 22 figures. Uses amsmath, amssymb, graphicx and mathrsfs package

    Reply

    Get PDF

    Temperature and heat stress in a concrete column at early ages

    Get PDF
    The temperature development and the stress generated in a cylindrical column of concrete are investigated. The problem is essentially two-dimensional, and is solved using a finite element package. Adiabatic temperature data from four different concrete mixes are used and the influences on the temperature and stress development due to the use of silica fumes or slag in the mixes are discussed

    Supergravity loop contributions to brane world supersymmetry breaking

    Full text link
    We compute the supergravity loop contributions to the visible sector scalar masses in the simplest 5D `brane-world' model. Supersymmetry is assumed to be broken away from the visible brane and the contributions are UV finite due to 5D locality. We perform the calculation with N = 1 supergraphs, using a formulation of 5D supergravity in terms of N = 1 superfields. We compute contributions to the 4D effective action that determine the visible scalar masses, and we find that the mass-squared terms are negative.Comment: 12 pages, LaTeX 2

    Grounding strategies for solar PV panels

    Get PDF
    Despite the installation of LPS, the possibility of direct lightning strikes to the solar PV panel frame/structure might still happen. Hence, this paper discusses the grounding strategies for solar PV panels to mitigate hazards from overvoltages when this occurs. In this research project, two strategies are considered for the solar PV assemblies; individual assembly grounding and grouped assemblies grounding. This paper focuses on individual assembly grounding and some preliminary results are presented and discussed
    corecore