195 research outputs found

    STUDIES ON NUTRITIONAL PROFILE AND ANTIOXIDANT POTENTIAL OF DIFFERENT DIOSCOREA SP WITH PLECTRANTHUS ROTUNDIFOLIUS

    Get PDF
    Objective: Protection from oxidative damage to the tissues is provided by natural or synthetic antioxidants. Because of the multiple mechanisms of actions and presence of various phytochemicals, plant-based antioxidants are preferred. Dioscorea is well known as a traditional edible tuber. The present study was undertaken to explore and highlights the nutritional benefits and to evaluate the in vitro antioxidant and free radical scavenging capacity of ethanolic extract of three different underutilised Dioscorea species (D. alata, D. pentaphylla and D. oppositifolia) with a common cultivated crop, Plectranthus rotundifolius.Methods: Different processing methods are adopted to assess their influence on nutritive value and antioxidant properties. Tubers were studied for proximate composition using standard analytical methods. Mineral elements were analysed using ICP-MS (Inductively Coupled Plasma-Mass Spectrometer). Antioxidant potential of raw and processed samples was determined using a range of in vitro models.Results: The presence of essential minerals such as Na, K, Ca, P, Zn and Mn were observed. High radical scavenging activity was observed in the tubers of Dioscorea. Results indicated that phenolic compounds are the significant contributors to the antioxidant activity.Conclusion: Current study suggests that Dioscorea might be a promising natural antioxidant and could be very useful health food, as they enhance the antioxidant defence system. It also proposes that underutilized tubers can efficiently contribute to the nutritional requirement and food security.Â

    In vitro evaluation of Mucuna pruriens (L.) DC. antioxidant activity

    Get PDF
    Mucuna pruriens (L). Dc is a plant of the Fabaceae family, commonly known as velvet bean, itchy bean, chiporro bean, mucuna, among others. This plant has several medicinal properties, including its potential to treat Parkinson's disease (PD). International studies have shown that this plant surpasses the benefits of the substance levodopa in the treatment of PD. Taking into account that nerve cells are highly sensitive to oxidative substances, this study evaluated the antioxidant activity of mucuna and compared it to that of levodopa. The plant seeds' phenolic concentration was quantified by using the Folin-Denis reagent and the antioxidant activity assays were performed by using three different methods: the reduction of the phosphomolybdenium complex, the reduction of radical 1,1-diphenyl-2-picrylhydrazyl (DPPH•) and the formation of radical monocation ABTS•+, from the acid [2-2'-azinobis (3-ethylbenzothiazoline-6-sulfonate)]. Results showed that M. pruriens presents high antioxidant capacity, although not superior to isolated levodopa antioxidant capacity. Therefore, further studies should be performed to elucidate the activity of this plant in humans.A Mucuna pruriens (L). Dc é uma planta da família Fabaceae, conhecida popularmente como feijão-veludo, fava-coceira, feijão chiporro, mucuna, entre outros. Possui diversas propriedades medicinais, entre elas, o tratamento da doença de Parkinson (DP). Estudos internacionais vêm demonstrando que essa planta possui atividade superior à do fármaco levodopa para o tratamento da DP. O presente estudo avaliou a possibilidade da atividade antioxidante dessa planta auxiliar nesses resultados, uma vez que as células nervosas são altamente sensíveis às substâncias oxidativas. Para isto foi quantificada a concentração fenólica da semente da mucuna e os testes empregados para a avaliação da atividade antioxidante foram o teste de redução do complexo fosfomolibdênio, redução do radical 1,1-difenil-2-picril-hidrazil (DPPH•) e a formação do radical monocatiônico ABTS•+, proveniente do ácido [2-2'-azino-bis(3-etil-benzolina-6-sulfonado)]. Essa análise demonstrou que M. pruriens possui alta capacidade antioxidante, no entanto, não superior à levodopa isolada e, portanto, novos estudos devem ser realizados para a elucidação da atividade dessa planta em seres humanos

    Antioxidant potential of bitter cumin (Centratherum anthelminticum (L.) Kuntze) seeds in in vitro models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bitter cumin (<it>Centratherum anthelminticum </it>(L.) Kuntze), is a medicinally important plant. Earlier, we have reported phenolic compounds, antioxidant, and anti-hyperglycemic, antimicrobial activity of bitter cumin. In this study we have further characterized the antioxidative activity of bitter cumin extracts in various in vitro models.</p> <p>Methods</p> <p>Bitter cumin seeds were extracted with a combination of acetone, methanol and water. The antioxidant activity of bitter cumin extracts were characterized in various <it>in vitro </it>model systems such as DPPH radical, ABTS radical scavenging, reducing power, oxidation of liposomes and oxidative damage to DNA.</p> <p>Results</p> <p>The phenolic extracts of bitter cumin at microgram concentration showed significant scavenging of DPPH and ABTS radicals, reduced phosphomolybdenum (Mo(VI) to Mo(V)), ferricyanide Fe(III) to Fe(II), inhibited liposomes oxidation and hydroxyl radical induced damage to prokaryotic genomic DNA. The results showed a direct correlation between phenolic acid content and antioxidant activity.</p> <p>Conclusion</p> <p>Bitter cumin is a good source of natural antioxidants.</p

    Evaluation of Physicochemical and Antioxidant Properties of Peanut Protein Hydrolysate

    Get PDF
    Peanut protein and its hydrolysate were compared with a view to their use as food additives. The effects of pH, temperature and protein concentration on some of their key physicochemical properties were investigated. Compared with peanut protein, peanut peptides exhibited a significantly higher solubility and significantly lower turbidity at pH values 2–12 and temperature between 30 and 80°C. Peanut peptide showed better emulsifying capacity, foam capacity and foam stability, but had lower water holding and fat adsorption capacities over a wide range of protein concentrations (2–5 g/100 ml) than peanut protein isolate. In addition, peanut peptide exhibited in vitro antioxidant properties measured in terms of reducing power, scavenging of hydroxyl radical, and scavenging of DPPH radical. These results suggest that peanut peptide appeared to have better functional and antioxidant properties and hence has a good potential as a food additive
    corecore