45 research outputs found

    Perivascular Spaces Segmentation in Brain MRI Using Optimal 3D Filtering

    Get PDF
    Perivascular Spaces (PVS) are a recently recognised feature of Small Vessel Disease (SVD), also indicating neuroinflammation, and are an important part of the brain's circulation and glymphatic drainage system. Quantitative analysis of PVS on Magnetic Resonance Images (MRI) is important for understanding their relationship with neurological diseases. In this work, we propose a segmentation technique based on the 3D Frangi filtering for extraction of PVS from MRI. Based on prior knowledge from neuroradiological ratings of PVS, we used ordered logit models to optimise Frangi filter parameters in response to the variability in the scanner's parameters and study protocols. We optimized and validated our proposed models on two independent cohorts, a dementia sample (N=20) and patients who previously had mild to moderate stroke (N=48). Results demonstrate the robustness and generalisability of our segmentation method. Segmentation-based PVS burden estimates correlated with neuroradiological assessments (Spearman's ρ\rho = 0.74, p << 0.001), suggesting the great potential of our proposed metho

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Progress in particle-based multiscale and hybrid methods for flow applications

    Get PDF

    A facile colloidal route for superhydrophobic films with hierarchical roughness

    No full text
    We present a simple bottom-up colloidal route towards the manufacture of hierarchical substrates. Owing to the double length scale roughness, these super-structure arrays exhibit superhydrophobic wetting behaviour, characterized by large contact angles, limited hysteresis and small sliding angles. The assembly procedure of the nanocolloidal silica and gold particles is reviewed, as well as the chemical treatments required to obtain stable, reproducible substrate
    corecore