44 research outputs found

    Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of coastal nutrient sources in the persistence of <it>Karenia brevis </it>red tides in coastal waters of Florida is a contentious issue that warrants investigation into the regulation of nutrient responses in this dinoflagellate. In other phytoplankton studied, nutrient status is reflected by the expression levels of N- and P-responsive gene transcripts. In dinoflagellates, however, many processes are regulated post-transcriptionally. All nuclear encoded gene transcripts studied to date possess a 5' <it>trans</it>-spliced leader (SL) sequence suggestive, based on the trypanosome model, of post-transcriptional regulation. The current study therefore sought to determine if the transcriptome of <it>K. brevis </it>is responsive to nitrogen and phosphorus and is informative of nutrient status.</p> <p>Results</p> <p>Microarray analysis of N-depleted <it>K. brevis </it>cultures revealed an increase in the expression of transcripts involved in N-assimilation (nitrate and ammonium transporters, glutamine synthetases) relative to nutrient replete cells. In contrast, a transcriptional signal of P-starvation was not apparent despite evidence of P-starvation based on their rapid growth response to P-addition. To study transcriptome responses to nutrient addition, the limiting nutrient was added to depleted cells and changes in global gene expression were assessed over the first 48 hours following nutrient addition. Both N- and P-addition resulted in significant changes in approximately 4% of genes on the microarray, using a significance cutoff of 1.7-fold and p ≤ 10<sup>-4</sup>. By far, the earliest responding genes were dominated in both nutrient treatments by pentatricopeptide repeat (PPR) proteins, which increased in expression up to 3-fold by 1 h following nutrient addition. PPR proteins are nuclear encoded proteins involved in chloroplast and mitochondria RNA processing. Correspondingly, other functions enriched in response to both nutrients were photosystem and ribosomal genes.</p> <p>Conclusions</p> <p>Microarray analysis provided transcriptomic evidence for N- but not P-limitation in <it>K. brevis</it>. Transcriptomic responses to the addition of either N or P suggest a concerted program leading to the reactivation of chloroplast functions. Even the earliest responding PPR protein transcripts possess a 5' SL sequence that suggests post-transcriptional control. Given the current state of knowledge of dinoflagellate gene regulation, it is currently unclear how these rapid changes in such transcript levels are achieved.</p

    Measurement of B_{s}^{0} meson production in pp and PbPb collisions at \sqrt{SNN}

    Get PDF
    The production cross sections of B_{s}^{0} mesons and charge conjugates are measured in proton-proton (pp) and PbPb collisions via the exclusive decay channel B_{s}^{0}→J/ψϕ→μ^{+}μ^{−}K^{+}K^{−} at a center-of-mass energy of 5.02 TeV per nucleon pair and within the rapidity range |y|<2.4 using the CMS detector at the LHC. The pp measurement is performed as a function of transverse momentum (p_{T}) of the B_{s}^{0} mesons in the range of 7 to 50 GeV/c and is compared to the predictions of perturbative QCD calculations. The B_{s}^{0} production yield in PbPb collisions is measured in two p_{T} intervals, 7 to 15 and 15 to 50 GeV/c, and compared to the yield in pp collisions in the same kinematic region. The nuclear modification factor (R_{AA}) is found to be 1.5±0.6(stat)±0.5(syst) for 7–15 GeV/c, and 0.87±0.30(stat)±0.17(syst) for 15–50 GeV/c, respectively. Within current uncertainties, the B_{s}^{0} results are consistent with models of strangeness enhancement, and suppression by parton energy loss, as observed for the B+ mesons

    Reliable analysis for the nonlinear fractional calculus model of the semilunar heart valve vibrations

    No full text
    WOS: 000285931900002The aim of this paper is to solve the equation of motion of semilunar heart valve vibrations using the homotopy perturbation method. The vibrations of the closed semilunar valves were modeled with fractional derivatives. The fractional derivatives are described in the Caputo sense. The methods give an analytic solution in the form of a convergent series with easily computable components, requiring no linearization or small perturbation. Analytical solution is obtained for the equation of motion in terms of Mittag-Leffler function with the help of Laplace transformation. These solutions can be interesting for a better fit of experimental data. Copyright (C) 2010 John Wiley & Sons, Ltd

    Analysis and numerical computations of the fractional regularized long-wave equation with damping term

    No full text
    bulut, hasan/0000-0002-6089-1517; Yavuz, Mehmet/0000-0002-3966-6518WOS: 000520542100001This study explores the fractional damped generalized regularized long-wave equation in the sense of Caputo, Atangana-Baleanu, and Caputo-Fabrizio fractional derivatives. With the aid of fixed-point theorem in the Atangana-Baleanu fractional derivative with Mittag-Leffler-type kernel, we show the existence and uniqueness of the solution to the damped generalized regularized long-wave equation. The modified Laplace decomposition method (MLDM) defined in the sense of Caputo, Atangana-Baleanu, and Caputo-Fabrizio (in the Riemann sense) operators is used in securing the approximate-analytical solutions of the nonlinear model. The numerical simulations of the obtained solutions are performed with different suitable values of rho, which is the order of fractional parameter. We have seen the effect of the various parameters and variables on the displacement in figures.TUBITAK (The Scientific and Technological Research Council of Turkey)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK)M. Yavuz was supported by TUBITAK (The Scientific and Technological Research Council of Turkey)

    Residual structures, conformational fluctuations, and electrostatic interactions in the synergistic folding of two intrinsically disordered proteins

    Get PDF
    To understand the interplay of residual structures and conformational fluctuations in the interaction of intrinsically disordered proteins (IDPs), we first combined implicit solvent and replica exchange sampling to calculate atomistic disordered ensembles of the nuclear co-activator binding domain (NCBD) of transcription coactivator CBP and the activation domain of the p160 steroid receptor coactivator ACTR. The calculated ensembles are in quantitative agreement with NMRderived residue helicity and recapitulate the experimental observation that, while free ACTR largely lacks residual secondary structures, free NCBD is a molten globule with a helical content similar to that in the folded complex. Detailed conformational analysis reveals that free NCBD has an inherent ability to substantially sample all the helix configurations that have been previously observed either unbound or in complexes. Intriguingly, further high-temperature unbinding and unfolding simulations in implicit and explicit solvents emphasize the importance of conformational fluctuations in synergistic folding of NCBD with ACTR. A balance between preformed elements and conformational fluctuations appears necessary to allow NCBD to interact with different targets and fold into alternative conformations. Together with previous topology-based modeling and existing experimental data, the current simulations strongly support an ‘‘extended conformational selection’’ synergistic folding mechanism that involves a key intermediate state stabilized by interaction between the C-terminal helices of NCBD and ACTR. In addition, the atomistic simulations reveal the role of long-range as well as short-range electrostatic interactions in cooperating with readily fluctuating residual structures, which might enhance the encounter rate and promote efficient folding upon encounter for facile binding and folding interactions of IDPs. Thus, the current study not only provides a consistent mechanistic understanding of the NCBD/ACTR interaction, but also helps establish a multi-scale molecular modeling framework for understanding the structure, interaction, and regulation of IDPs in general
    corecore