30 research outputs found

    Corneal topographic changes in premenopausal and postmenopausal women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To asses the effect of menopause on the corneal curvature changes using corneal computerized videokeratography (CVK) in premenopausal and postmenopausal healthy women.</p> <p>Methods</p> <p>Thirty-six postmenopausal women with mean ages of 49.2 (range 39 to 57) were enrolled in this randomized, prospective study, comparing with 26 healthy controls with mean ages of 38.5 +/- 4.9 (range 32 to 49). Subjects were determined to be postmenopausal, by the Gynecology and Obstetrics Department, based on blood Follicular Stimulating Hormone (FSH), Luteinizing Hormone (LH), Estradiol, Progesterone levels and clinical complaints. Complete ophthalmic examination and CVK using Haag-Streit System was performed in both premenopausal and postmenopausal women.</p> <p>Results</p> <p>Mean horizontal curvature and vertical curvature of central corneal power in premenopausal women were 43.5 +/- 1.25 Diopter (D), and 44.1 +/- 1.53 D. Mean horizontal curvature and vertical curvature of central corneal power in postmenopausal women were 43.9 +/- 1.4 D, and 44.6 +/- 1.3 D. The mean keratometric astigmatisms of premenopausal and postmenopausal women were 0.81 +/- 0.57 D (4–179 degrees), 0.74 degrees +/- 0.5 D (1–180 degrees) respectively. No significant corneal curvature changes were detected between premenopausal and postmenopausal groups (P > 0.05). On the other hand, we only found negative but significant correlation between horizontal corneal curvature and estrogen level of postmenopausal women (r = -0.346, p = 0.038).</p> <p>Conclusion</p> <p>Menopause is physiologic process and may also affect corneal topographic changes. In postmenopausal women, corneal steeping was observed minimally compared to premenopausal women. The results suggest that changes in estrogen level of women with menopause are associated with slightly alteration of horizontal curvature of cornea.</p

    Synonymous but not the same: the causes and consequences of codon bias

    Get PDF
    Despite their name, synonymous mutations have significant consequences for cellular processes in all taxa. As a result, an understanding of codon bias is central to fields as diverse as molecular evolution and biotechnology. Although recent advances in sequencing and synthetic biology have helped resolve longstanding questions about codon bias, they have also uncovered striking patterns that suggest new hypotheses about protein synthesis. Ongoing work to quantify the dynamics of initiation and elongation is as important for understanding natural synonymous variation as it is for designing transgenes in applied contexts
    corecore