2,510 research outputs found
GHOSTM: A GPU-Accelerated Homology Search Tool for Metagenomics
A large number of sensitive homology searches are required for mapping DNA sequence fragments to known protein sequences in public and private databases during metagenomic analysis. BLAST is currently used for this purpose, but its calculation speed is insufficient, especially for analyzing the large quantities of sequence data obtained from a next-generation sequencer. However, faster search tools, such as BLAT, do not have sufficient search sensitivity for metagenomic analysis. Thus, a sensitive and efficient homology search tool is in high demand for this type of analysis.We developed a new, highly efficient homology search algorithm suitable for graphics processing unit (GPU) calculations that was implemented as a GPU system that we called GHOSTM. The system first searches for candidate alignment positions for a sequence from the database using pre-calculated indexes and then calculates local alignments around the candidate positions before calculating alignment scores. We implemented both of these processes on GPUs. The system achieved calculation speeds that were 130 and 407 times faster than BLAST with 1 GPU and 4 GPUs, respectively. The system also showed higher search sensitivity and had a calculation speed that was 4 and 15 times faster than BLAT with 1 GPU and 4 GPUs.We developed a GPU-optimized algorithm to perform sensitive sequence homology searches and implemented the system as GHOSTM. Currently, sequencing technology continues to improve, and sequencers are increasingly producing larger and larger quantities of data. This explosion of sequence data makes computational analysis with contemporary tools more difficult. We developed GHOSTM, which is a cost-efficient tool, and offer this tool as a potential solution to this problem
The complete inventory of receptors encoded by the rat natural killer cell gene complex
The natural killer cell gene complex (NKC) encodes receptors belonging to the C-type lectin superfamily expressed primarily by NK cells and other leukocytes. In the rat, the chromosomal region that starts with the Nkrp1a locus and ends with the Ly49i8 locus is predicted to contain 67 group V C-type lectin superfamily genes, making it one of the largest congregation of paralogous genes in vertebrates. Based on physical proximity and phylogenetic relationships between these genes, the rat NKC can be divided into four major parts. We have previously reported the cDNA cloning of the majority of the genes belonging to the centromeric Nkrp1/Clr cluster and the two telomeric groups, the Klre1–Klri2 and the Ly49 clusters. Here, we close the gap between the Nkrp1/Clr and the Klre1–Klri2 clusters by presenting the cDNA cloning and transcription patterns of eight genes spanning from Cd69 to Dectin1, including the novel Clec2m gene. The definition, organization, and evolution of the rat NKC are discussed
Application of COMPOCHIP Microarray to Investigate the Bacterial Communities of Different Composts
A microarray spotted with 369 different 16S rRNA gene probes specific to microorganisms involved in the degradation process of organic waste during composting was developed. The microarray was tested with pure cultures, and of the 30,258 individual probe-target hybridization reactions performed, there were only 188 false positive (0.62%) and 22 false negative signals (0.07%). Labeled target DNA was prepared by polymerase chain reaction amplification of 16S rRNA genes using a Cy5-labeled universal bacterial forward primer and a universal reverse primer. The COMPOCHIP microarray was applied to three different compost types (green compost, manure mix compost, and anaerobic digestate compost) of different maturity (2, 8, and 16 weeks), and differences in the microorganisms in the three compost types and maturity stages were observed. Multivariate analysis showed that the bacterial composition of the three composts was different at the beginning of the composting process and became more similar upon maturation. Certain probes (targeting Sphingobacterium, Actinomyces, Xylella/Xanthomonas/ Stenotrophomonas, Microbacterium, Verrucomicrobia, Planctomycetes, Low G + C and Alphaproteobacteria) were more influential in discriminating between different composts. Results from denaturing gradient gel electrophoresis supported those of microarray analysis. This study showed that the COMPOCHIP array is a suitable tool to study bacterial communities in composts
Recommended from our members
The Millennium Eruption of Changbaishan Tianchi Volcano is VEI 6, not 7
Funder: AXA joint research initiativeAbstractThe Millennium Eruption (AD 946–947) of Changbaishan Tianchi Volcano is one of the largest known eruptions in recorded history. With the help of previously published isopachs and distal ash thicknesses, we re-calculate the bulk volume of its distal eruptive product, the B-Tm ash, as 27–62 km3 and the total eruption volume as 40–98 km3. The updated volume estimates are around half of those estimated by previous studies of this seminal eruption. Our work shows that the Millennium Eruption is a VEI-6 eruption, rather than VEI-7 as previously envisaged, and its magnitude is also lower than previously thought. This has implications for regional frequency-magnitude relationships and may also partially explain the limited regional, rather than global, climatic effects of the Millennium Eruption.</jats:p
At the brink of eusociality: transcriptomic correlates of worker behaviour in a small carpenter bee
Background: There is great interest in understanding the genomic underpinnings of social evolution, in particular, the evolution of eusociality (caste-containing societies with non-reproductives that care for siblings). Subsociality is a key precursor for the evolution of eusociality and characterized by prolonged parental care and parent-offspring interaction. Here, we provide the first transcriptomic data for the small carpenter bee, Ceratina calcarata. This species is of special interest because it is subsocial and in the same family as the highly eusocial honey bee, Apis mellifera. In addition, some C. calcarata females demonstrate alloparental care without reproduction, which provides a unique opportunity to study worker behaviour in a non-eusocial species. Results: We uncovered similar gene expression patterns related to maternal care and sibling care in different groups of females. This agrees with the maternal heterochrony hypothesis, specifically, that changes in timing of offspring care gene expression are related to worker behaviour in incipient insect societies. In addition, we also detected some similarity to caste-related gene expression patterns in highly eusocial honey bees, and uncovered large lifetime changes in gene expression that accompany shifts in reproductive and maternal care behaviour. Conclusions: For Ceratina calcarata, we found that transcript expression profiles were most similar between sibling care and maternal care females. The maternal care behaviour exhibited post-reproductively by Ceratina mothers is concordant in terms of transcript expression with the alloparental care exhibited by workers. In line with theoretical predictions, our data are consistent with the maternal heterochrony hypothesis for the evolutionary development of worker behaviour in subsocial bees
Accelerated expansion from ghost-free bigravity: a statistical analysis with improved generality
We study the background cosmology of the ghost-free, bimetric theory of
gravity. We perform an extensive statistical analysis of the model using both
frequentist and Bayesian frameworks and employ the constraints on the expansion
history of the Universe from the observations of supernovae, the cosmic
microwave background and the large scale structure to estimate the model's
parameters and test the goodness of the fits. We explore the parameter space of
the model with nested sampling to find the best-fit chi-square, obtain the
Bayesian evidence, and compute the marginalized posteriors and mean
likelihoods. We mainly focus on a class of sub-models with no explicit
cosmological constant (or vacuum energy) term to assess the ability of the
theory to dynamically cause a late-time accelerated expansion. The model
behaves as standard gravity without a cosmological constant at early times,
with an emergent extra contribution to the energy density that converges to a
cosmological constant in the far future. The model can in most cases yield very
good fits and is in perfect agreement with the data. This is because many
points in the parameter space of the model exist that give rise to
time-evolution equations that are effectively very similar to those of the
CDM. This similarity makes the model compatible with observations as
in the CDM case, at least at the background level. Even though our
results indicate a slightly better fit for the CDM concordance model
in terms of the -value and evidence, none of the models is statistically
preferred to the other. However, the parameters of the bigravity model are in
general degenerate. A similar but perturbative analysis of the model as well as
more data will be required to break the degeneracies and constrain the
parameters, in case the model will still be viable compared to the
CDM.Comment: 42 pages, 9 figures; typos corrected in equations (2.12), (2.13),
(3.7), (3.8) and (3.9); more discussions added (footnotes 5, 8, 10 and 13)
and abstract, sections 4.2, 4.3 and 5 (conclusions) modified in response to
referee's comments; references added; acknowledgements modified; all results
completely unchanged; matches version accepted for publication in JHE
Tunicate cytostatic factor TC14-3 induces a polycomb group gene and histone modification through Ca2+ binding and protein dimerization
<p>Abstract</p> <p>Background</p> <p>As many invertebrate species have multipotent cells that undergo cell growth and differentiation during regeneration and budding, many unique and interesting homeostatic factors are expected to exist in those animals. However, our understanding of such factors and global mechanisms remains very poor. Single zooids of the tunicate, <it>Polyandrocarpa </it><it>misakiensis</it>, can give off as many as 40 buds during the life span. Bud development proceeds by means of transdifferentiation of very limited number of cells and tissues. TC14-3 is one of several different but closely related polypeptides isolated from <it>P. misakiensis</it>. It acts as a cytostatic factor that regulates proliferation, adhesion, and differentiation of multipotent cells, although the molecular mechanism remains uncertain. The Polycomb group (PcG) genes are involved in epigenetic control of genomic activity in mammals. In invertebrates except <it>Drosophila</it>, PcG and histone methylation have not been studied so extensively, and genome-wide gene regulation is poorly understood.</p> <p>Results</p> <p>When Phe<sup>65 </sup>of TC14-3 was mutated to an acidic amino acid, the resultant mutant protein failed to dimerize. The replacement of Thr<sup>69 </sup>with Arg<sup>69 </sup>made dimers unstable. When Glu<sup>106 </sup>was changed to Gly<sup>106</sup>, the resultant mutant protein completely lost Ca<sup>2+ </sup>binding. All these mutant proteins lacked cytostatic activity, indicating the requirement of protein dimerization and calcium for the activity. <it>Polyandrocarpa </it><it>Eed</it>, a component of PcG, is highly expressed during budding, like TC14-3. When wild-type and mutant TC14-3s were applied in vivo and in vitro to <it>Polyandrocarpa </it>cells, only wild-type TC14-3 could induce <it>Eed </it>without affecting histone methyltransferase gene expression. Eed-expressing cells underwent trimethylation of histone H3 lysine27. <it>PmEed </it>knockdown by RNA interference rescued cultured cells from the growth-inhibitory effects of TC14-3.</p> <p>Conclusion</p> <p>These results show that in <it>P. misakiensis</it>, the cytostatic activity of TC14-3 is mediated by <it>PmEed </it>and resultant histone modification, and that the gene expression requires both the protein dimerization and Ca<sup>2+</sup>-binding of TC14-3. This system consisting of a humoral factor, PcG, and histone methylation would contribute to the homeostatic regulation of cell growth and terminal differentiation of invertebrate multipotent cells.</p
- …