65 research outputs found

    FDG–PET. A possible prognostic factor in head and neck cancer

    Get PDF
    Previous studies have shown that high uptake of 18F-fluoro-2-deoxy-glucose in head and neck cancer, as determined by the standardized uptake value on positron emission tomography scan, was associated with poor survival. The aim of this study was to confirm the association and to establish whether a high standardized uptake value had prognostic significance. Seventy-three consecutive patients with newly diagnosed squamous cell carcinoma of the head and neck underwent a positron emission tomography study before treatment. Age, gender, performance status tumour grade, stage, maximal tumour diameter and standardized uptake value were analyzed for their possible association with survival. The median standardized uptake value for all primary tumours was 7.16 (90% range 2.30 to 18.60). In univariate survival analysis the cumulative survival was decreased as the stage, tumour diameter and standardized uptake value increased. An standardized uptake value of 10 was taken as a cut-off for high and low uptake tumours. When these two groups were compared, an standardized uptake value >10 predicted for significantly worse outcome (P=0.003). Multivariate analysis demonstrated that an standardized uptake value >10 provided prognostic information independent of the tumour stage and diameter (P=0.002). We conclude that high FDG uptake (standardized uptake value>10) on positron emission tomography is an important marker for poor outcome in primary squamous cell carcinoma of the head and neck. Standardized uptake value may be useful in distinguishing those tumours with a more aggressive biological nature and hence identifying patients that require intensive treatment protocols including hyperfractionated radiotherapy and/or chemotherapy

    Comparative genomics of the bacterial genus Listeria: Genome evolution is characterized by limited gene acquisition and limited gene loss

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The bacterial genus <it>Listeria </it>contains pathogenic and non-pathogenic species, including the pathogens <it>L. monocytogenes </it>and <it>L. ivanovii</it>, both of which carry homologous virulence gene clusters such as the <it>prfA </it>cluster and clusters of internalin genes. Initial evidence for multiple deletions of the <it>prfA </it>cluster during the evolution of <it>Listeria </it>indicates that this genus provides an interesting model for studying the evolution of virulence and also presents practical challenges with regard to definition of pathogenic strains.</p> <p>Results</p> <p>To better understand genome evolution and evolution of virulence characteristics in <it>Listeria</it>, we used a next generation sequencing approach to generate draft genomes for seven strains representing <it>Listeria </it>species or clades for which genome sequences were not available. Comparative analyses of these draft genomes and six publicly available genomes, which together represent the main <it>Listeria </it>species, showed evidence for (i) a pangenome with 2,032 core and 2,918 accessory genes identified to date, (ii) a critical role of gene loss events in transition of <it>Listeria </it>species from facultative pathogen to saprotroph, even though a consistent pattern of gene loss seemed to be absent, and a number of isolates representing non-pathogenic species still carried some virulence associated genes, and (iii) divergence of modern pathogenic and non-pathogenic <it>Listeria </it>species and strains, most likely circa 47 million years ago, from a pathogenic common ancestor that contained key virulence genes.</p> <p>Conclusions</p> <p>Genome evolution in <it>Listeria </it>involved limited gene loss and acquisition as supported by (i) a relatively high coverage of the predicted pan-genome by the observed pan-genome, (ii) conserved genome size (between 2.8 and 3.2 Mb), and (iii) a highly syntenic genome. Limited gene loss in <it>Listeria </it>did include loss of virulence associated genes, likely associated with multiple transitions to a saprotrophic lifestyle. The genus <it>Listeria </it>thus provides an example of a group of bacteria that appears to evolve through a loss of virulence rather than acquisition of virulence characteristics. While <it>Listeria </it>includes a number of species-like clades, many of these putative species include clades or strains with atypical virulence associated characteristics. This information will allow for the development of genetic and genomic criteria for pathogenic strains, including development of assays that specifically detect pathogenic <it>Listeria </it>strains.</p

    The present and future of serum diagnostic tests for testicular germ cell tumours.

    Get PDF
    Testicular germ cell tumours (GCTs) are the most common malignancy occurring in young adult men and the incidence of these tumours is increasing. Current research priorities in this field include improving overall survival for patients classified as being 'poor-risk' and reducing late effects of treatment for patients classified as 'good-risk'. Testicular GCTs are broadly classified into seminomas and nonseminomatous GCTs (NSGCTs). The conventional serum protein tumour markers α-fetoprotein (AFP), human chorionic gonadotrophin (hCG) and lactate dehydrogenase (LDH) show some utility in the management of testicular malignant GCT. However, AFP and hCG display limited sensitivity and specificity, being indicative of yolk sac tumour (AFP) and choriocarcinoma or syncytiotrophoblast (hCG) subtypes. Furthermore, LDH is a very nonspecific biomarker. Consequently, seminomas and NSGCTs comprising a pure embryonal carcinoma subtype are generally negative for these conventional markers. As a result, novel universal biomarkers for testicular malignant GCTs are required. MicroRNAs are short, non-protein-coding RNAs that show much general promise as biomarkers. MicroRNAs from two 'clusters', miR-371-373 and miR-302-367, are overexpressed in all malignant GCTs, regardless of age (adult or paediatric), site (gonadal or extragonadal) and subtype (seminomas, yolk sac tumours or embryonal carcinomas). A panel of four circulating microRNAs from these two clusters (miR-371a-3p, miR-372-3p, miR-373-3p and miR-367-3p) is highly sensitive and specific for the diagnosis of malignant GCT, including seminoma and embryonal carcinoma. In the future, circulating microRNAs might be useful in diagnosis, disease monitoring and prognostication of malignant testicular GCTs, which might also reduce reliance on serial CT scanning. For translation into clinical practice, important practical considerations now need addressing.The authors would like to acknowledge grant funding from CwCUK/GOSHCC (M.J.M. N.C. grant W1058), SPARKS (M.J.M. N.C. grant 11CAM01), CRUK (N.C. grant A13080) MRC (M.J.M. grant MC_EX_G0800464) and National Health Service funding to the Royal Marsden/Institute of Cancer Research National Institute for Health Research Biomedical Research Centre for Cancer (R.A.H.). The authors also thank the Max Williamson Fund, the Josh Carrick Foundation and The Perse Preparatory School, Cambridge for support.This is the author accepted manuscript. The final version is available fromNature Publishing Group via https://doi.org/10.1038/nrurol.2016.17

    Blue and Red Light Modulates SigB-Dependent Gene Transcription, Swimming Motility and Invasiveness in Listeria monocytogenes

    Get PDF
    Background: In a number of gram-positive bacteria, including Listeria, the general stress response is regulated by the alternative sigma factor B (SigB). Common stressors which lead to the activation of SigB and the SigB-dependent regulon are high osmolarity, acid and several more. Recently is has been shown that also blue and red light activates SigB in Bacillus subtilis. Methodology/Principal Findings: By qRT-PCR we analyzed the transcriptional response of the pathogen L. monocytogenes to blue and red light in wild type bacteria and in isogenic deletion mutants for the putative blue-light receptor Lmo0799 and the stress sigma factor SigB. It was found that both blue (455 nm) and red (625 nm) light induced the transcription of sigB and SigB-dependent genes, this induction was completely abolished in the SigB mutant. The blue-light effect was largely dependent on Lmo0799, proving that this protein is a genuine blue-light receptor. The deletion of lmo0799 enhanced the red-light effect, the underlying mechanism as well as that of SigB activation by red light remains unknown. Blue light led to an increased transcription of the internalin A/B genes and of bacterial invasiveness for Caco-2 enterocytes. Exposure to blue light also strongly inhibited swimming motility of the bacteria in a Lmo0799- and SigB-dependent manner, red light had no effect there. Conclusions/Significance: Our data established that visible, in particular blue light is an important environmental signal with an impact on gene expression and physiology of the non-phototrophic bacterium L. monocytogenes. In natural environments these effects will result in sometimes random but potentially also cyclic fluctuations of gene activity, depending on the light conditions prevailing in the respective habitat
    corecore