1,449 research outputs found

    Effects of synbiotic supplement on human gut microbiota, body composition and weight loss in obesity

    Get PDF
    Targeting gut microbiota with synbiotics (probiotic supplements containing prebiotic components) is emerging as a promising intervention in the comprehensive nutritional approach to reducing obesity. Weight loss resulting from low-carbohydrate high-protein diets can be significant but has also been linked to potentially negative health effects due to increased bacterial fermentation of undigested protein within the colon and subsequent changes in gut microbiota composition. Correcting obesity-induced disruption of gut microbiota with synbiotics can be more effective than supplementation with probiotics alone because prebiotic components of synbiotics support the growth and survival of positive bacteria therein. The purpose of this placebo-controlled intervention clinical trial was to evaluate the effects of a synbiotic supplement on the composition, richness and diversity of gut microbiota and associations of microbial species with body composition parameters and biomarkers of obesity in human subjects participating in a weight loss program. The probiotic component of the synbiotic used in the study contained Lactobacillus acidophilus, Bifidobacterium lactis, Bifidobacterium longum, and Bifidobacterium bifidum and the prebiotic component was a galactooligosaccharide mixture. The results showed no statistically significant differences in body composition (body mass, BMI, body fat mass, body fat percentage, body lean mass, and bone mineral content) between the placebo and synbiotic groups at the end of the clinical trial (3-month intervention, 20 human subjects participating in weight loss intervention based on a low-carbohydrate, high-protein, reduced energy diet). Synbiotic supplementation increased the abundance of gut bacteria associated with positive health effects, especially Bifidobacterium and Lactobacillus, and it also appeared to increase the gut microbiota richness. A decreasing trend in the gut microbiota diversity in the placebo and synbiotic groups was observed at the end of trial, which may imply the effect of the high-protein low-carbohydrate diet used in the weight loss program. Regression analysis performed to correlate abundance of species following supplementation with body composition parameters and biomarkers of obesity found an association between a decrease over time in blood glucose and an increase in Lactobacillus abundance, particularly in the synbiotic group. However, the decrease over time in body mass, BMI, waist circumstance, and body fat mass was associated with a decrease in Bifidobacterium abundance. The results obtained support the conclusion that synbiotic supplement used in this clinical trial modulates human gut microbiota by increasing abundance of potentially beneficial microbial species

    The effects of the initial arterial tone on the pressure responses to phenylephrine

    Get PDF
    The effect of the elevated arterial tone on pressure responses to stimulation of arterial α - adrenoreceptors by phenylephrine hydrochloride was studied in anesthetized Wistar rats. Different levels of the arterial tone and, hence of the mean arterial pressure, were established by means of angiotensin II infusion in the range from 101 to 160 mmHg. An elevation of the arterial tone led to a significant reduction of the arterial pressure and peripheral resistance rise produced by phenylephrine. The degree of relative reduction of the increase in the diastolic pressure exceeded 1.3 times that in the systolic pressure. The shifts of cardiac outputs remained unchanged. After cessation of angiotensin II infusion the restoration of the arterial pressure took place almost till the initial level. At this time the pressure effects of phenylephrine were tended to recovery. It is suggested that the elevated arterial tone attenuates the systemic pressure response to stimulation of arterial α -adrenoreceptors by a vascular mechanism based on a transmural pressure changes evoked by the constriction of the arterial vessels

    Adaptive interpretation of gas well deliverability tests with generating data of the IPR curve

    Get PDF
    The paper considers topical issues of improving accuracy of estimated parameters given by data obtained from gas well deliverability tests, decreasing test time, and reducing gas emissions into the atmosphere. The aim of the research is to develop the method of adaptive interpretation of gas well deliverability tests with a resulting IPR curve and using a technique of generating data, which allows taking into account additional a priori information, improving accuracy of determining formation pressure and flow coefficients, reducing test time. The present research is based on the previous theoretical and practical findings in the spheres of gas well deliverability tests, systems analysis, system identification, function optimization and linear algebra. To test the method, the authors used the field data of deliverability tests of two wells, run in the Urengoy gas and condensate field, Tyumen Oblast. The authors suggest the method of adaptive interpretation of gas well deliverability tests with the resulting IPR curve and the possibility of generating data of bottomhole pressure and a flow rate at different test stages. The suggested method allows defining the estimates of the formation pressure and flow coefficients, optimal in terms of preassigned measures of quality, and setting the adequate number of test stages in the course of well testing. The case study of IPR curve data processing has indicated that adaptive interpretation provides more accurate estimates on the formation pressure and flow coefficients, as well as reduces the number of test stages

    BLR kinematics and Black Hole Mass in Markarian 6

    Full text link
    We present results of the optical spectral and photometric observations of the nucleus of Markarian 6 made with the 2.6-m Shajn telescope at the Crimean Astrophysical Observatory. The continuum and emission Balmer line intensities varied more than by a factor of two during 1992-2008. The lag between the continuum and Hbeta emission line flux variations is 21.1+-1.9 days. For the Halpha line the lag is about 27 days but its uncertainty is much larger. We use Monte-Carlo simulation of the random time series to check the effect of our data sampling on the lag uncertainties and we compare our simulation results with those obtained by random subset selection (RSS) method of Peterson et al. (1998). The lag in the high-velocity wings are shorter than in the line core in accordance with the virial motions. However, the lag is slightly larger in the blue wing than in the red wing. This is a signature of the infall gas motion. Probably the BLR kinematic in the Mrk 6 nucleus is a combination of the Keplerian and infall motions. The velocity-delay dependence is similar for individual observational seasons. The measurements of the Hbeta line width in combination with the reverberation lag permits us to determine the black hole mass, M_BH=(1.8+-0.2)x10^8 M_sun. This result is consistent with the AGN scaling relationships between the BLR radius and the optical continuum luminosity (R_BLR is proportional to L^0.5) as well as with the black-hole mass-luminosity relationship (M_BH-L) under the Eddington luminosity ratio for Mrk 6 to be L_bol/L_Edd ~ 0.01.Comment: 17 pages, 10 figures, accepted for publication in MNRA

    Functional Tetrahedron Equation

    Full text link
    We describe a scheme of constructing classical integrable models in 2+1-dimensional discrete space-time, based on the functional tetrahedron equation - equation that makes manifest the symmetries of a model in local form. We construct a very general "block-matrix model" together with its algebro-geometric solutions, study its various particular cases, and also present a remarkably simple scheme of quantization for one of those cases.Comment: LaTeX, 16 page

    Variability of Fe II Emission Features in the Seyfert 1 Galaxy NGC 5548

    Get PDF
    We study the low-contrast Fe II emission blends in the ultraviolet (1250--2200A) and optical (4000--6000A) spectra of the Seyfert 1 galaxy NGC 5548 and show that these features vary in flux and that these variations are correlated with those of the optical continuum. The amplitude of variability of the optical Fe II emission is 50% - 75% that of Hbeta and the ultraviolet Fe II emission varies with an even larger amplitude than Hbeta. However, accurate measurement of the flux in these blends proves to be very difficult even using excellent Fe II templates to fit the spectra. We are able to constrain only weakly the optical Fe II emission-line response timescale to a value less than several weeks; this upper limit exceeds all the reliably measured emission-line lags in this source so it is not particularly meaningful. Nevertheless, the fact that the optical Fe II and continuum flux variations are correlated indicates that line fluorescence in a photoionized plasma, rather than collisional excitation, is responsible for the Fe II emission. The iron emission templates are available upon request.Comment: 34 pages including 12 figures and 2 tables. Accepted for publication by ApJ (tentatively in vol. 626 June 10, 2005

    Proton isotropy boundaries as measured on mid- and low-altitude satellites

    Get PDF
    Polar CAMMICE MICS proton pitch angle distributions with energies of 31-80 keV were analyzed to determine the locations where anisotropic pitch angle distributions (perpendicular flux dominating) change to isotropic distributions. We compared the positions of these mid-altitude isotropic distribution boundaries (IDB) for different activity conditions with low-altitude isotropic boundaries (IB) observed by NOAA 12. Although the obtained statistical properties of IDBs were quite similar to those of IBs, a small difference in latitudes, most pronounced on the nightside and dayside, was found. We selected several events during which simultaneous observations in the same local time sector were available from Polar at mid-altitudes, and NOAA or DMSP at low-altitudes. Magnetic field mapping using the Tsyganenko T01 model with the observed solar wind input parameters showed that the low- and mid-altitude isotropization boundaries were closely located, which leads us to suggest that the Polar IDB and low-altitude IBs are related. Furthermore, we introduced a procedure to control the difference between the observed and model magnetic field to reduce the large scatter in the mapping. We showed that the isotropic distribution boundary (IDB) lies in the region where <i>R<sub>c</sub></i>/ρ~6, that is at the boundary of the region where the non-adiabatic pitch angle scattering is strong enough. We therefore conclude that the scattering in the large field line curvature regions in the nightside current sheet is the main mechanism producing isotropization for the main portion of proton population in the tail current sheet. This mechanism controls the observed positions of both IB and IDB boundaries. Thus, this tail region can be probed, in its turn, with observations of these isotropy boundaries.<p> <b>Keywords.</b> Magnetospheric physics (Energetic particles, Precipitating; Magnetospheric configuration and dynamics; Magnetotail

    Influence of temperature gradients on tunnel junction thermometry below 1 K: cooling and electron-phonon coupling

    Full text link
    We have studied thermal gradients in thin Cu and AlMn wires, both experimentally and theoretically. In the experiments, the wires were Joule heated non-uniformly at sub-Kelvin temperatures, and the resulting temperature gradients were measured using normal metal-insulator-superconducting tunnel junctions. The data clearly shows that even in reasonably well conducting thin wires with a short (10μ\sim 10 \mum) non-heated portion, significant temperature differences can form. In most cases, the measurements agree well with a model which includes electron-phonon interaction and electronic thermal conductivity by the Wiedemann-Franz law.Comment: J. Low Temp. Phys. in pres
    corecore