51 research outputs found

    Duffy blood group gene polymorphisms among malaria vivax patients in four areas of the Brazilian Amazon region

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Duffy blood group polymorphisms are important in areas where <it>Plasmodium vivax </it>predominates, because this molecule acts as a receptor for this protozoan. In the present study, Duffy blood group genotyping in <it>P. vivax </it>malaria patients from four different Brazilian endemic areas is reported, exploring significant associations between blood group variants and susceptibility or resistance to malaria.</p> <p>Methods</p> <p>The <it>P. vivax </it>identification was determined by non-genotypic and genotypic screening tests. The Duffy blood group was genotyped by PCR/RFLP in 330 blood donors and 312 malaria patients from four Brazilian Amazon areas. In order to assess the variables significance and to obtain independence among the proportions, the Fisher's exact test was used.</p> <p>Results</p> <p>The data show a high frequency of the <it>FYA/FYB </it>genotype, followed by <it>FYB/FYB, FYA/FYA</it>, <it>FYA/FYB-33 </it>and <it>FYB/FYB-33</it>. Low frequencies were detected for the <it>FYA/FY</it><sup><it>X</it></sup>, <it>FYB/FY</it><sup><it>X</it></sup>, <it>FYX/FY</it><sup><it>X </it></sup>and <it>FYB-33/FYB-33 </it>genotypes. Negative Duffy genotype (<it>FYB-33/FYB-33</it>) was found in both groups: individuals infected and non-infected (blood donors). No individual carried the <it>FY</it><sup><it>X</it></sup><it>/FYB-33 </it>genotype. Some of the Duffy genotypes frequencies showed significant differences between donors and malaria patients.</p> <p>Conclusion</p> <p>The obtained data suggest that individuals with the <it>FYA/FYB </it>genotype have higher susceptibility to malaria. The presence of the <it>FYB-33 </it>allele may be a selective advantage in the population, reducing the rate of infection by <it>P. vivax </it>in this region. Additional efforts may contribute to better elucidate the physiopathologic differences in this parasite/host relationship in regions endemic for <it>P. vivax </it>malaria, in particular the Brazilian Amazon region.</p

    Development of an amplicon-based sequencing approach in response to the global emergence of mpox

    Get PDF
    The 2022 multicountry mpox outbreak concurrent with the ongoing Coronavirus Disease 2019 (COVID-19) pandemic further highlighted the need for genomic surveillance and rapid pathogen whole-genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical specimens that tested presumptively positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (Ct) (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR Ct below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon-based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole-genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response.This publication was made possible by CTSA Grant Number UL1 TR001863 from the National Center for Advancing Translational Science (NCATS), a component of the National Institutes of Health (NIH) awarded to CBFV. INSA was partially funded by the HERA project (Grant/ 2021/PHF/23776) supported by the European Commission through the European Centre for Disease Control (to VB).info:eu-repo/semantics/publishedVersio

    Molecular variability in Amerindians: widespread but uneven information

    Full text link

    G6PD deficiency in Latin America: systematic review on prevalence and variants

    Full text link
    Plasmodium vivax radical cure requires the use of primaquine (PQ), a drug that induces haemolysis in glucose-6-phosphate dehydrogenase deficient (G6PDd) individuals, which further hampers malaria control efforts. The aim of this work was to study the G6PDd prevalence and variants in Latin America (LA) and the Caribbean region. A systematic search of the published literature was undertaken in August 2013. Bibliographies of manuscripts were also searched and additional references were identified. Low prevalence rates of G6PDd were documented in Argentina, Bolivia, Mexico, Peru and Uruguay, but studies from Curaçao, Ecuador, Jamaica, Saint Lucia, Suriname and Trinidad, as well as some surveys carried out in areas of Brazil, Colombia and Cuba, have shown a high prevalence (> 10%) of G6PDd. The G6PD A-202A mutation was the variant most broadly distributed across LA and was identified in 81.1% of the deficient individuals surveyed. G6PDd is a frequent phenomenon in LA, although certain Amerindian populations may not be affected, suggesting that PQ could be safely used in these specific populations. Population-wide use of PQ as part of malaria elimination strategies in LA cannot be supported unless a rapid, accurate and field-deployable G6PDd diagnostic test is made available

    Genetic Diversity of Drug-Related Genes in Native Americans of the Brazilian Amazon

    Get PDF
    Introduction: The genetic admixture of the Brazilian population has considerable relevance to the implementation of the principles of pharmacogenomics (PGx), as it may compromise the extrapolation of data obtained in more homogeneous world populations. Purpose: This study aims to investigate a panel of 117 polymorphisms in 35 pharmacogenes, which contains label recommendations or clinical evidence by international drug regulatory agencies, in Amazonian Native American populations, and compare the results obtained with continental population data from the 1000 Genomes Project Consortium. Patients and Methods: The study population is composed of 109 Native American individuals from three Brazilian Amazon groups. The genotyping of the PGx polymorphisms was performed by allelic discrimination using TagMan (R) OpenArray Genotyping with a panel of 120 customized assays on the QuantStudio (TM) 12K Flex Real-Time PCR System. Results: Statistical differences within the Native American populations were observed regarding both genotypes and phenotypes of some genes of the CYP family. The discriminant analysis of principal components (DAPC5) between the NAM group and the continental populations of the 1000 Genomes Project resulted in the clustering of the three Native American populations. Additionally, in general, the NAM group was determined to be closely situated between East Asia, America, and South Asia groups, which enabled us to infer a genetic similarity between these populations. The DAPC analysis further demonstrated that eight polymorphisms and six polymorphisms were more relevant in differentiating the NAM from the continental populations and the NAM populations among themselves, respectively. Conclusion: Some investigated polymorphisms show differences among world populations, particularly with populations of European origin, for whom precision medicine protocols are primarily designed. The accumulated knowledge regarding these variations may assist in the design of specific protocols for Native American populations and populations admixed with them
    corecore