7 research outputs found
Transport Through Andreev Bound States in a Graphene Quantum Dot
Andreev reflection-where an electron in a normal metal backscatters off a
superconductor into a hole-forms the basis of low energy transport through
superconducting junctions. Andreev reflection in confined regions gives rise to
discrete Andreev bound states (ABS), which can carry a supercurrent and have
recently been proposed as the basis of qubits [1-3]. Although signatures of
Andreev reflection and bound states in conductance have been widely reported
[4], it has been difficult to directly probe individual ABS. Here, we report
transport measurements of sharp, gate-tunable ABS formed in a
superconductor-quantum dot (QD)-normal system, which incorporates graphene. The
QD exists in the graphene under the superconducting contact, due to a
work-function mismatch [5, 6]. The ABS form when the discrete QD levels are
proximity coupled to the superconducting contact. Due to the low density of
states of graphene and the sensitivity of the QD levels to an applied gate
voltage, the ABS spectra are narrow, can be tuned to zero energy via gate
voltage, and show a striking pattern in transport measurements.Comment: 25 Pages, included SO
Properties of Graphene: A Theoretical Perspective
In this review, we provide an in-depth description of the physics of
monolayer and bilayer graphene from a theorist's perspective. We discuss the
physical properties of graphene in an external magnetic field, reflecting the
chiral nature of the quasiparticles near the Dirac point with a Landau level at
zero energy. We address the unique integer quantum Hall effects, the role of
electron correlations, and the recent observation of the fractional quantum
Hall effect in the monolayer graphene. The quantum Hall effect in bilayer
graphene is fundamentally different from that of a monolayer, reflecting the
unique band structure of this system. The theory of transport in the absence of
an external magnetic field is discussed in detail, along with the role of
disorder studied in various theoretical models. We highlight the differences
and similarities between monolayer and bilayer graphene, and focus on
thermodynamic properties such as the compressibility, the plasmon spectra, the
weak localization correction, quantum Hall effect, and optical properties.
Confinement of electrons in graphene is nontrivial due to Klein tunneling. We
review various theoretical and experimental studies of quantum confined
structures made from graphene. The band structure of graphene nanoribbons and
the role of the sublattice symmetry, edge geometry and the size of the
nanoribbon on the electronic and magnetic properties are very active areas of
research, and a detailed review of these topics is presented. Also, the effects
of substrate interactions, adsorbed atoms, lattice defects and doping on the
band structure of finite-sized graphene systems are discussed. We also include
a brief description of graphane -- gapped material obtained from graphene by
attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic
OBSERVATION OF DOUBLE-GAP-EDGE ANDREEV REFLECTION AT SI/NB INTERFACES BY POINT-CONTACT SPECTROSCOPY
Andreev reflection point-contact spectroscopy is performed on a bilayer consisting of 50-nm degenerately doped Si backed with Nb. Due to the short mean free path both injection into and transport across the Si layer are diffusive, in contrast to the ballistic conditions prevailing in clean metal layers. Nevertheless a large Andreev signal is observed in the point-contact characteristics, not reduced by elastic scattering in the Si layer or by interface scattering, but only limited by the transmission coefficient of the metal-semiconductor point contact. Two peaks in the Andreev reflection probability are visible, marking the values of the superconducting energy gap at the interface on the Nb and Si sides. This interpretation is supported by a method of solving the Bogolubov equations analytically using a simplified expression for the variation of the order parameter close to the interface. This observation enables a comparison with theoretical predictions of the gap discontinuity in the proximity effect. It is found that the widely used de Gennes model does not agree with the experimental data
OBSERVATION OF DOUBLE-GAP-EDGE ANDREEV REFLECTION AT SI/NB INTERFACES BY POINT-CONTACT SPECTROSCOPY
Andreev reflection point-contact spectroscopy is performed on a bilayer consisting of 50-nm degenerately doped Si backed with Nb. Due to the short mean free path both injection into and transport across the Si layer are diffusive, in contrast to the ballistic conditions prevailing in clean metal layers. Nevertheless a large Andreev signal is observed in the point-contact characteristics, not reduced by elastic scattering in the Si layer or by interface scattering, but only limited by the transmission coefficient of the metal-semiconductor point contact. Two peaks in the Andreev reflection probability are visible, marking the values of the superconducting energy gap at the interface on the Nb and Si sides. This interpretation is supported by a method of solving the Bogolubov equations analytically using a simplified expression for the variation of the order parameter close to the interface. This observation enables a comparison with theoretical predictions of the gap discontinuity in the proximity effect. It is found that the widely used de Gennes model does not agree with the experimental data