13 research outputs found

    Inhibitory Receptors Are Expressed by Trypanosoma cruzi-Specific Effector T Cells and in Hearts of Subjects with Chronic Chagas Disease

    Get PDF
    We had formerly demonstrated that subjects chronically infected with Trypanosoma cruzi show impaired T cell responses closely linked with a process of T cell exhaustion. Recently, the expression of several inhibitory receptors has been associated with T cell dysfunction and exhaustion. In this study, we have examined the expression of the cytotoxic T lymphocyte antigen 4 (CTLA-4) and the leukocyte immunoglobulin like receptor 1 (LIR-1) by peripheral T. cruzi antigen-responsive IFN-gamma (IFN-γ)-producing and total T cells from chronically T. cruzi-infected subjects with different clinical forms of the disease. CTAL-4 expression was also evaluated in heart tissue sections from subjects with severe myocarditis. The majority of IFN-γ-producing CD4+ T cells responsive to a parasite lysate preparation were found to express CTLA-4 but considerably lower frequencies express LIR-1, irrespective of the clinical status of the donor. Conversely, few IFN-γ-producing T cells responsive to tetanus and diphtheria toxoids expressed CTLA-4 and LIR-1. Polyclonal stimulation with anti-CD3 antibodies induced higher frequencies of CD4+CTAL-4+ T cells in patients with severe heart disease than in asymptomatic subjects. Ligation of CTLA-4 and LIR-1 with their agonistic antibodies, in vitro, reduces IFN-γ production. Conversely, CTLA-4 blockade did not improved IFN-γ production in response to T. cruzi antigens. Subjects with chronic T. cruzi infection had increased numbers of CD4+LIR-1+ among total peripheral blood mononuclear cells, relative to uninfected individuals and these numbers decreased after treatment with benznidazole. CTLA-4 was also expressed by CD3+ T lymphocytes infiltrating heart tissues from chronically infected subjects with severe myocarditis. These findings support the conclusion that persistent infection with T. cruzi leads to the upregulation of inhibitory receptors which could alter parasite specific T cell responses in the chronic phase of Chagas disease

    1,3-Dichloroacetone: A Robust Reagent for Preparing Bicyclic Peptides

    No full text
    The chemical synthesis of cyclic peptides is a well-established area of research. This has been further expanded by development of bio-orthogonal reactions that enable access to peptides of greater structural complexity. One approach utilizes 1,3-dichloroacetone to selectively link free cysteine side-chains with an acetone-like bridge via an SN2 reaction. Here, we have used this reaction to dimerize cyclic peptide monomers to create novel bicyclic dimeric peptides. We investigated a range of reaction parameters to identify the optimal dimerization conditions for our model systems. One of the acetone-linked dimeric peptides was analyzed for proteolytic stability in human serum and was observed to still be fully intact after 48 h. This study provides valuable insights into the application of 1,3-dichloroacetone as a tool in the synthesis of complex, multicyclic peptides

    Dual-targeting anti-angiogenic cyclic peptides as potential drug leads for cancer therapy

    Get PDF
    Peptide analogues derived from bioactive hormones such as somatostatin or certain growth factors have great potential as angiogenesis inhibitors for cancer applications. In an attempt to combat emerging drug resistance many FDA-approved anti-angiogenesis therapies are co-administered with cytotoxic drugs as a combination therapy to target multiple signaling pathways of cancers. However, cancer therapies often encounter limiting factors such as high toxicities and side effects. Here, we combined two anti-angiogenic epitopes that act on different pathways of angiogenesis into a single non-toxic cyclic peptide framework, namely MCoTI-II (Momordica cochinchinensis trypsin inhibitor-II), and subsequently assessed the anti-angiogenic activity of the novel compound. We hypothesized that the combination of these two epitopes would elicit a synergistic effect by targeting different angiogenesis pathways and result in improved potency, compared to that of a single epitope. This novel approach has resulted in the development of a potent, non-toxic, stable and cyclic analogue with nanomolar potency inhibition in in vitro endothelial cell migration and in vivo chorioallantoic membrane angiogenesis assays. This is the first report to use the MCoTI-II framework to develop a 2-in-1 anti-angiogenic peptide, which has the potential to be used as a form of combination therapy for targeting a wide range of cancers

    NMR relaxation analysis of pharmaceutically active peptides

    No full text
    Nuclear spin relaxation (NSR) is a powerful approach for studying dynamics at the ps-ns timescale, and is typically used to characterize fundamental biophysical phenomena such as bond vibrations and fluctuations, which affect the activity of the molecule in question. Here, this chapter will look to the application of NSR to study peptides, which are short chains of amino acids and have shown promise as modalities in drug design. This chapter will begin with a brief description of theoretical and practical aspects related to the use of NSR, such as experimental considerations during data acquisition and processing. As an example of this approach for studying peptide dynamics, this chapter will step through a case study that examines the effect of backbone cyclization on the dynamics of polycyclic disulfide-rich peptides. This case study will focus on a cyclic and linear variant of a promising drug scaffold isolated from sunflower seeds called SFTI-1 (sunflower trypsin inhibitor-1), which is a naturally backbone-cyclic peptide that comprises one cross-bracing disulfide bond
    corecore