50 research outputs found
Lactate Buildup at the Site of Chronic Inflammation Promotes Disease by Inducing CD4(+) T Cell Metabolic Rewiring
Accumulation of lactate in the tissue microenvironment is a feature of both inflammatory disease and cancer. Here, we assess the response of immune cells to lactate in the context of chronic inflammation. We report that lactate accumulation in the inflamed tissue contributes to the upregulation of the lactate transporter SLC5A12 by human CD4+ T cells. SLC5A12-mediated lactate uptake into CD4+ T cells induces a reshaping of their effector phenotype, resulting in increased IL17 production via nuclear PKM2/STAT3 and enhanced fatty acid synthesis. It also leads to CD4+ T cell retention in the inflamed tissue as a consequence of reduced glycolysis and enhanced fatty acid synthesis. Furthermore, antibody-mediated blockade of SLC5A12 ameliorates the disease severity in a murine model of arthritis. Finally, we propose that lactate/SLC5A12-induced metabolic reprogramming is a distinctive feature of lymphoid synovitis in rheumatoid arthritis patients and a potential therapeutic target in chronic inflammatory disorders
Physiological roles of macrophages
Macrophages are present in mammals from midgestation, contributing to physiologic homeostasis throughout life. Macrophages arise from yolk sac and foetal liver progenitors during embryonic development in the mouse and persist in different organs as heterogeneous, self-renewing tissue-resident populations. Bone marrow-derived blood monocytes are recruited after birth to replenish tissue-resident populations and to meet further demands during inflammation, infection and metabolic perturbations. Macrophages of mixed origin and different locations vary in replication and turnover, but are all active in mRNA and protein synthesis, fulfilling organ-specific and systemic trophic functions, in addition to host defence. In this review we emphasise selected properties and non-immune functions of tissue macrophages which contribute to physiologic homeostasis
Future Perspectives of Bone Tissue Engineering with Special Emphasis on Extracellular Vesicles
Peer reviewe
The restorative role of annexin A1 at the bloodâbrain barrier
Annexin A1 is a potent anti-inflammatory molecule that has been extensively studied in the peripheral immune
system, but has not as yet been exploited as a therapeutic target/agent. In the last decade, we have undertaken the
study of this molecule in the central nervous system (CNS), focusing particularly on the primary interface between the
peripheral body and CNS: the bloodâbrain barrier. In this review, we provide an overview of the role of this molecule
in the brain, with a particular emphasis on its functions in the endothelium of the bloodâbrain barrier, and the protective
actions the molecule may exert in neuroinflammatory, neurovascular and metabolic disease. We focus on the
possible new therapeutic avenues opened up by an increased understanding of the role of annexin A1 in the CNS
vasculature, and its potential for repairing bloodâbrain barrier damage in disease and aging
Evaluation of the anti-inflammatory effects of synthesised tanshinone I and isotanshinone I analogues in zebrafish
During inflammation, dysregulated neutrophil behaviour can play a major role in a range of chronic inflammatory diseases, for many of which current treatments are generally ineffective. Recently, specific naturally occurring tanshinones have shown promising anti-inflammatory effects by targeting neutrophils in vivo, yet such tanshinones, and moreover, their isomeric isotanshinone counterparts, are still a largely underexplored class of compounds, both in terms of synthesis and biological effects. To explore the anti-inflammatory effects of isotanshinones, and the tanshinones more generally, a series of substituted tanshinone and isotanshinone analogues was synthesised, alongside other structurally similar molecules. Evaluation of these using a transgenic zebrafish model of neutrophilic inflammation revealed differential anti-inflammatory profiles in vivo, with a number of compounds exhibiting promising effects. Several compounds reduce initial neutrophil recruitment and/or promote resolution of neutrophilic inflammation, of which two also result in increased apoptosis of human neutrophils. In particular, the methoxy-substituted tanshinone 39 specifically accelerates resolution of inflammation without affecting the recruitment of neutrophils to inflammatory sites, making this a particularly attractive candidate for potential pro-resolution therapeutics, as well as a possible lead for future development of functionalised tanshinones as molecular tools and/or chemical probes. The structurally related ÎČ-lapachones promote neutrophil recruitment but do not affect resolution. We also observed notable differences in toxicity profiles between compound classes. Overall, we provide new insights into the in vivo anti-inflammatory activities of several novel tanshinones, isotanshinones, and structurally related compounds
Characterizing the anti-inflammatory and tissue protective actions of a novel Annexin A1 peptide
This work was supported by a
collaborative project between Unigene Corp. and
Queen Mary University of London and by the
William Harvey Research Foundation. JD is
supported by a Sir Henry Dale Fellowship jointly
funded by the Wellcome Trust and the Royal
Society (grant no: 107613/Z/15/Z). MP was
supported by the Wellcome Trust (grant no:
086867/Z/08)