1,513 research outputs found
The feasibility of using pedometers and brief advice to increase activity in sedentary older women:a pilot study
Background: People over the age of 70 carry the greatest burden of chronic disease, disability and health care use. Participation in physical activity is crucial for health, and walking accounts for much of the physical activity undertaken by sedentary individuals. Pedometers are a useful motivational tool to encourage increased walking and they are cheap and easy to use. The aim of this pilot study was to evaluate the feasibility of the use of pedometers plus a theory-based intervention to assist sedentary older women to accumulate increasing amounts of physical activity, mainly through walking. Methods: Female participants over the age of 70 were recruited from primary care and randomised to receive either pedometer plus a theory-based intervention or a theory-based intervention alone. The theory-based intervention consisted of motivational techniques, goal-setting, barrier identification and self-monitoring with pedometers and daily diaries. The pedometer group were further randomised to one of three target groups: a 10%, 15% or 20% monthly increase in step count to assess the achievability and acceptability of a range of targets. The primary outcome was change in daily activity levels measured by accelerometry. Secondary outcome measures were lower limb function, health related quality of life, anxiety and depression. Results: 54 participants were recruited into the study, with an average age of 76. There were 9 drop outs, 45 completing the study. All participants in the pedometer group found the pedometers easy to use and there was good compliance with diary keeping (96% in the pedometer group and 83% in the theory-based intervention alone group). There was a strong correlation (0.78) between accelerometry and pedometer step counts i.e. indicating that walking was the main physical activity amongst participants. There was a greater increase in activity (accelerometry) amongst those in the 20% target pedometer group compared to the other groups, although not reaching statistical significance (p = 0.192). Conclusion: We have demonstrated that it is feasible to use pedometers and provide theory-based advice to community dwelling sedentary older women to increase physical activity levels and a larger study is planned to investigate this further.Publisher PDFPeer reviewe
Cephalometric norms for the Saudi children living in the western region of Saudi Arabia: a research report
BACKGROUND: Previous studies have established specific cephalometric norms for children with different ethnic backgrounds, showing different facial features for each group. Up till now, there is a paucity of information about the cephalometric features of Saudi children living in the western region of Saudi Arabia, who have distinct social and climatic characteristics. The aim of the present study was to establish cephalometric norms for children living in the western region of Saudi Arabia. METHODS: A total of 62 lateral cephalometric radiographs of Saudis (33 females and 29 males; aged 9–12 years) having good facial proportions and Class I dental occlusion, were traced and analyzed. Using the t-test, the mean value, standard deviation and the range of 20 angular and linear variables were calculated and compared to norms of adult Saudis living in the Western region of Saudi Arabia using the t-test. Male and female groups were also compared using the t- test. RESULTS: Saudi children tend to have a significantly shorter and lower face height, a larger angle of convexity, and more proclined and protruded incisors when compared with adult Saudis (P < 0.05). There were no statistically significant differences between male and female groups. CONCLUSION: Saudi children have distinct cephalometric features, which should be used as a reference in the orthodontic treatment of young Saudi patients
A framework for Operational Security Metrics Development for industrial control environment
Security metrics are very crucial towards providing insights when measuring security states and susceptibilities in industrial operational environments. Obtaining practical security metrics depend on effective security metrics development approaches. To be effective, a security metrics development framework should be scope-definitive, objective-oriented, reliable, simple, adaptable, and repeatable (SORSAR). A framework for Operational Security Metrics Development (OSMD) for industry control environments is presented, which combines concepts and characteristics from existing approaches. It also adds the new characteristic of adaptability. The OSMD framework is broken down into three phases of: target definition, objective definition, and metrics synthesis. A case study scenario is used to demonstrate an instance of how to implement and apply the proposed framework to demonstrate its usability and workability. Expert elicitation has also be used to consolidate the validity of the proposed framework. Both validation approaches have helped to show that the proposed framework can help create effective and efficient ICS-centric security metrics taxonomy that can be used to evaluate capabilities or vulnerabilities. The understanding from this can help enhance security assurance within industrial operational environments
Structure–activity relationships on the odor detectability of homologous carboxylic acids by humans
We measured concentration detection functions for the odor detectability of the homologs: formic, acetic, butyric, hexanoic, and octanoic acids. Subjects (14 ≤ n ≤ 18) comprised young (19–37 years), healthy, nonsmoker, and normosmic participants from both genders. Vapors were delivered by air dilution olfactometry, using a three-alternative forced-choice procedure against carbon-filtered air, and an ascending concentration approach. Delivered concentrations were established by gas chromatography (flame ionization detector) in parallel with testing. Group and individual olfactory functions were modeled by a sigmoid (logistic) equation from which two parameters are calculated: C, the odor detection threshold (ODT) and D, the steepness of the function. Thresholds declined with carbon chain length along formic, acetic, and butyric acid where they reached a minimum (ODTs = 514, 5.2, and 0.26 ppb by volume, respectively). Then, they increased for hexanoic (1.0 ppb) and octanoic (0.86 ppb) acid. Odor thresholds and interindividual differences in olfactory acuity among these young, normosmic participants were lower than traditionally thought and reported. No significant effects of gender on odor detectability were observed. The finding of an optimum molecular size for odor potency along homologs confirms a prediction made by a model of ODTs based on a solvation equation. We discuss the mechanistic implications of this model for the process of olfactory detection
Evaluating the simulated radiative forcings, aerosol properties, and stratospheric warmings from the 1963 Mt Agung, 1982 El Chichón, and 1991 Mt Pinatubo volcanic aerosol clouds
Accurately quantifying volcanic impacts on climate is a key requirement for robust attribution of anthropogenic climate change. Here we use the Unified Model – United Kingdom Chemistry and Aerosol (UM-UKCA) composition–climate model to simulate the global dispersion of the volcanic aerosol clouds from the three largest eruptions of the 20th century: 1963 Mt Agung, 1982 El Chichón, and 1991 Mt Pinatubo. The model has interactive stratospheric chemistry and aerosol microphysics, with coupled aerosol–radiation interactions for realistic composition–dynamics feedbacks. Our simulations align with the design of the Interactive Stratospheric Aerosol Model Intercomparison (ISA-MIP) “Historical Eruption SO2 Emissions Assessment”. For each eruption, we perform three-member ensemble model experiments for upper, mid-point, and lower estimates of SO2 emission, each re-initialised from a control run to approximately match the observed transition in the phase of the quasi-biennial oscillation (QBO) in the 6 months after the eruptions. With this experimental design, we assess how each eruption's emitted SO2 translates into a tropical reservoir of volcanic aerosol and analyse the subsequent dispersion to mid-latitudes.
We compare the simulations to the volcanic forcing datasets (e.g. Space-based Stratospheric Aerosol Climatology (GloSSAC); Sato et al., 1993, and Ammann et al., 2003) that are used in historical integrations for the two most recent Coupled Model Intercomparison Project (CMIP) assessments. For Pinatubo and El Chichón, we assess the vertical extent of the simulated volcanic clouds by comparing modelled extinction to the Stratospheric Aerosol and Gas Experiment (SAGE-II) v7.0 satellite measurements and to 1964–1965 Northern Hemisphere ground-based lidar measurements for Agung. As an independent test for the simulated volcanic forcing after Pinatubo, we also compare simulated shortwave (SW) and longwave (LW) top-of-the-atmosphere radiative forcings to the flux anomalies measured by the Earth Radiation Budget Experiment (ERBE) satellite instrument.
For the Pinatubo simulations, an injection of 10 to 14 Tg SO2 gives the best match to the High Resolution Infrared Sounder (HIRS) satellite-derived global stratospheric sulfur burden, with good agreement also with SAGE-II mid-visible and near-infra-red extinction measurements. This 10–14 Tg range of emission also generates a heating of the tropical stratosphere that is consistent with the temperature anomaly present in the ERA-Interim reanalysis. For El Chichón, the simulations with 5 and 7 Tg SO2 emission give best agreement with the observations. However, these simulations predict a much deeper volcanic cloud than represented in the GloSSAC dataset, which is largely based on an interpolation between Stratospheric Aerosol Measurements (SAM-II) satellite and aircraft measurements. In contrast, these simulations show much better agreement during the SAGE-II period after October 1984. For 1963 Agung, the 9 Tg simulation compares best to the forcing datasets with the model capturing the lidar-observed signature of the altitude of peak extinction descending from 20 km in 1964 to 16 km in 1965.
Overall, our results indicate that the downward adjustment to SO2 emission found to be required by several interactive modelling studies when simulating Pinatubo is also needed when simulating the Agung and El Chichón aerosol clouds. This strengthens the hypothesis that interactive stratospheric aerosol models may be missing an important removal or re-distribution process (e.g. effects of co-emitted ash) which changes how the tropical reservoir of volcanic aerosol evolves in the initial months after an eruption. Our model comparisons also identify potentially important inhomogeneities in the CMIP6 dataset for all three eruption periods that are hard to reconcile with variations predicted in the interactive stratospheric aerosol simulations. We also highlight large differences between the CMIP5 and CMIP6 volcanic aerosol datasets for the Agung and El Chichón periods. Future research should aim to reduce this uncertainty by reconciling the datasets with additional stratospheric aerosol observations
Antenatal influenza and pertussis vaccination in Western Australia: A cross-sectional survey of vaccine uptake and influencing factors
Background: Influenza and pertussis vaccines have been recommended in Australia for women during each pregnancy since 2010 and 2015, respectively. Estimating vaccination coverage and identifying factors affecting uptake are important for improving antenatal immunisation services.
Methods: A random sample of 800 Western Australian women ≥18 years of age who gave birth between 4th April and 4th October 2015 were selected. Of the 454 (57%) who were contactable by telephone, 424 (93%) completed a survey. Data were weighted by maternal age and area of residence to ensure representativeness. The proportion immunised against influenza and pertussis was the main outcome measure; multivariate logistic regression was used to identify factors significantly associated with antenatal vaccination. Results from the 2015 study were compared to similar surveys conducted in 2012–2014.
Results: In 2015, 71% (95% CI 66–75) of women received pertussis-containing vaccine and 61% (95% CI 56–66) received influenza vaccine during pregnancy; antenatal influenza vaccine coverage was 18% higher than in 2014 (43%; 95% CI: 34–46). Pertussis and influenza vaccine were co-administered for 68% of the women who received both vaccines. The majority of influenza vaccinations in 2015 were administered during the third trimester of pregnancy, instead of the second trimester, as was observed in prior years. Women whose care provider recommended both antenatal vaccinations had significantly higher odds of being vaccinated against both influenza and pertussis (OR 33.3, 95% CI: 15.15–73.38). Of unvaccinated mothers, 53.6% (95% CI: 45.9–61.3) and 78.3% (95% CI: 70.4–85.3) reported that they would have been vaccinated against influenza and pertussis, respectively, if their antenatal care provider had recommended it.
Conclusions: Pertussis vaccination coverage was high in the first year of an antenatal immunisation program in Western Australia. Despite a substantial increase in influenza vaccination uptake between 2014 and 2015, coverage remained below that for pertussis. Our data suggest influenza and pertussis vaccination rates of 83% and 94%, respectively, are achievable if providers were to recommend them to all pregnant women
SCUBA divers as oceanographic samplers: The potential of dive computers to augment aquatic temperature monitoring
Monitoring temperature of aquatic waters is of great importance, with modelled, satellite and in-situ data providing invaluable insights into long-term environmental change. However, there is often a lack of depth-resolved temperature measurements. Recreational dive computers routinely record temperature and depth, so could provide an alternate and highly novel source of oceanographic information to fill this data gap. In this study, a citizen science approach was used to obtain over 7,000 scuba diver temperature profiles. The accuracy, offset and lag of temperature records was assessed by comparing dive computers with scientific conductivity-temperature-depth instruments and existing surface temperature data. Our results show that, with processing, dive computers can provide a useful and novel tool with which to augment existing monitoring systems all over the globe, but especially in under-sampled or highly changeable coastal environments
- …