559 research outputs found
Constraints on cosmic hemispherical power anomalies from quasars
Recent analyses of the cosmic microwave background (CMB) maps from the WMAP
satellite have uncovered evidence for a hemispherical power anomaly, i.e. a
dipole modulation of the CMB power spectrum at large angular scales with an
amplitude of +/-14 percent. Erickcek et al have put forward an inflationary
model to explain this anomaly. Their scenario is a variation on the curvaton
scenario in which the curvaton possesses a large-scale spatial gradient that
modulates the amplitude of CMB fluctuations. We show that this scenario would
also lead to a spatial gradient in the amplitude of perturbations sigma_8, and
hence to a dipole asymmetry in any highly biased tracer of the underlying
density field. Using the high-redshift quasars from the Sloan Digital Sky
Survey, we find an upper limit on such a gradient of |nabla
sigma_8|/sigma_8<0.027/r_{lss} (99% posterior probability), where r_{lss} is
the comoving distance to the last-scattering surface. This rules out the
simplest version of the curvaton spatial gradient scenario.Comment: matches JCAP accepted version (minor revisions
Non-detection of a statistically anisotropic power spectrum in large-scale structure
We search a sample of photometric luminous red galaxies (LRGs) measured by
the Sloan Digital Sky Survey (SDSS) for a quadrupolar anisotropy in the
primordial power spectrum, in which P(\vec{k}) is an isotropic power spectrum
P(k) multiplied by a quadrupolar modulation pattern. We first place limits on
the 5 coefficients of a general quadrupole anisotropy. We also consider
axisymmetric quadrupoles of the form P(\vec{k}) = P(k){1 +
g_*[(\hat{k}\cdot\hat{n})^2-1/3]} where \hat{n} is the axis of the anisotropy.
When we force the symmetry axis \hat{n} to be in the direction (l,b)=(94
degrees,26 degrees) identified in the recent Groeneboom et al. analysis of the
cosmic microwave background, we find g_*=0.006+/-0.036 (1 sigma). With uniform
priors on \hat{n} and g_* we find that -0.41<g_*<+0.38 with 95% probability,
with the wide range due mainly to the large uncertainty of asymmetries aligned
with the Galactic Plane. In none of these three analyses do we detect evidence
for quadrupolar power anisotropy in large scale structure.Comment: 23 pages; 10 figures; 3 tables; replaced with version published in
JCAP (added discussion of scale-varying quadrupolar anisotropy
The High Redshift Integrated Sachs-Wolfe Effect
In this paper we rely on the quasar (QSO) catalog of the Sloan Digital Sky
Survey Data Release Six (SDSS DR6) of about one million photometrically
selected QSOs to compute the Integrated Sachs-Wolfe (ISW) effect at high
redshift, aiming at constraining the behavior of the expansion rate and thus
the behaviour of dark energy at those epochs. This unique sample significantly
extends previous catalogs to higher redshifts while retaining high efficiency
in the selection algorithm. We compute the auto-correlation function (ACF) of
QSO number density from which we extract the bias and the stellar
contamination. We then calculate the cross-correlation function (CCF) between
QSO number density and Cosmic Microwave Background (CMB) temperature
fluctuations in different subsamples: at high z>1.5 and low z<1.5 redshifts and
for two different choices of QSO in a conservative and in a more speculative
analysis. We find an overall evidence for a cross-correlation different from
zero at the 2.7\sigma level, while this evidence drops to 1.5\sigma at z>1.5.
We focus on the capabilities of the ISW to constrain the behaviour of the dark
energy component at high redshift both in the \LambdaCDM and Early Dark Energy
cosmologies, when the dark energy is substantially unconstrained by
observations. At present, the inclusion of the ISW data results in a poor
improvement compared to the obtained constraints from other cosmological
datasets. We study the capabilities of future high-redshift QSO survey and find
that the ISW signal can improve the constraints on the most important
cosmological parameters derived from Planck CMB data, including the high
redshift dark energy abundance, by a factor \sim 1.5.Comment: 20 pages, 18 figures, and 7 table
The sensitivity of BAO Dark Energy Constraints to General Isocurvature Perturbations
Baryon Acoustic Oscillation (BAO) surveys will be a leading method for
addressing the dark energy challenge in the next decade. We explore in detail
the effect of allowing for small amplitude admixtures of general isocurvature
perturbations in addition to the dominant adiabatic mode. We find that
non-adiabatic initial conditions leave the sound speed unchanged but instead
excite different harmonics. These harmonics couple differently to Silk damping,
altering the form and evolution of acoustic waves in the baryon-photon fluid
prior to decoupling. This modifies not only the scale on which the sound waves
imprint onto the baryon distribution, which is used as the standard ruler in
BAO surveys, but also the shape, width and height of the BAO peak. We discuss
these effects in detail and show how more general initial conditions impact our
interpretation of cosmological data in dark energy studies. We find that the
inclusion of these additional isocurvature modes leads to an increase in the
Dark Energy Task Force Figure of merit by 140% and 60% for the BOSS and ADEPT
experiments respectively when considered in conjunction with Planck data. We
also show that the incorrect assumption of adiabaticity has the potential to
bias our estimates of the dark energy parameters by () for a
single correlated isocurvature mode, and up to () for three
correlated isocurvature modes in the case of the BOSS (ADEPT) experiment. We
find that the use of the large scale structure data in conjunction with CMB
data improves our ability to measure the contributions of different modes to
the initial conditions by as much as 100% for certain modes in the fully
correlated case.Comment: 20 pages, 17 figure
Late-time acceleration in Higher Dimensional Cosmology
We investigate late time acceleration of the universe in higher dimensional
cosmology. The content in the universe is assumed to exert pressure which is
different in the normal and extra dimensions. Cosmologically viable solutions
are found to exist for simple forms of the equation of state. The parameters of
the model are fixed by comparing the predictions with supernovae data. While
observations stipulate that the matter exerts almost vanishing pressure in the
normal dimensions, we assume that, in the extra dimensions, the equation of
state is of the form . For appropriate choice
of parameters, a late time acceleration in the universe occurs with and
being approximately -0.46 and 0.76 respectively.Comment: 10 pages, 5 figure
Early Dark Energy at High Redshifts: Status and Perspectives
Early dark energy models, for which the contribution to the dark energy
density at high redshifts is not negligible, influence the growth of cosmic
structures and could leave observable signatures that are different from the
standard cosmological constant cold dark matter (CDM) model. In this
paper, we present updated constraints on early dark energy using geometrical
and dynamical probes. From WMAP five-year data, baryon acoustic oscillations
and type Ia supernovae luminosity distances, we obtain an upper limit of the
dark energy density at the last scattering surface (lss), (95% C.L.). When we include higher redshift
observational probes, such as measurements of the linear growth factors,
Gamma-Ray Bursts (GRBs) and Lyman- forest (\lya), this limit improves
significantly and becomes (95%
C.L.). Furthermore, we find that future measurements, based on the
Alcock-Paczy\'nski test using the 21cm neutral hydrogen line, on GRBs and on
the \lya forest, could constrain the behavior of the dark energy component and
distinguish at a high confidence level between early dark energy models and
pure CDM. In this case, the constraints on the amount of early dark
energy at the last scattering surface improve by a factor ten, when compared to
present constraints. We also discuss the impact on the parameter , the
growth rate index, which describes the growth of structures in standard and in
modified gravity models.Comment: 11 pages, 9 figures and 4 table
Dynamical Dark Energy model parameters with or without massive neutrinos
We use WMAP5 and other cosmological data to constrain model parameters in
quintessence cosmologies, focusing also on their shift when we allow for
non-vanishing neutrino masses. The Ratra-Peebles (RP) and SUGRA potentials are
used here, as examples of slowly or fastly varying state parameter w(a). Both
potentials depend on an energy scale \Lambda. Here we confirm the results of
previous analysis with WMAP3 data on the upper limits on \Lambda, which turn
out to be rather small (down to ~10^{-9} in RP cosmologies and ~10^{-5} for
SUGRA). Our constraints on \Lambda are not heavily affected by the inclusion of
neutrino mass as a free parameter. On the contrary, when the neutrino mass
degree of freedom is opened, significant shifts in the best-fit values of other
parameters occur.Comment: 9 pages, 3 figures, submitted to JCA
- …
