1,470 research outputs found

    Cysteine transport through excitatory amino acid transporter 3 (EAAT3)

    Get PDF
    Excitatory amino acid transporters (EAATs) limit glutamatergic signaling and maintain extracellular glutamate concentrations below neurotoxic levels. Of the five known EAAT isoforms (EAATs 1-5), only the neuronal isoform, EAAT3 (EAAC1), can efficiently transport the uncharged amino acid L-cysteine. EAAT3-mediated cysteine transport has been proposed to be a primary mechanism used by neurons to obtain cysteine for the synthesis of glutathione, a key molecule in preventing oxidative stress and neuronal toxicity. The molecular mechanisms underlying the selective transport of cysteine by EAAT3 have not been elucidated. Here we propose that the transport of cysteine through EAAT3 requires formation of the thiolate form of cysteine in the binding site. Using Xenopus oocytes and HEK293 cells expressing EAAT2 and EAAT3, we assessed the transport kinetics of different substrates and measured transporter-associated currents electrophysiologically. Our results show that L-selenocysteine, a cysteine analog that forms a negatively-charged selenolate ion at physiological pH, is efficiently transported by EAATs 1-3 and has a much higher apparent affinity for transport when compared to cysteine. Using a membrane tethered GFP variant to monitor intracellular pH changes associated with transport activity, we observed that transport of either L-glutamate or L-selenocysteine by EAAT3 decreased intracellular pH, whereas transport of cysteine resulted in cytoplasmic alkalinization. No change in pH was observed when cysteine was applied to cells expressing EAAT2, which displays negligible transport of cysteine. Under conditions that favor release of intracellular substrates through EAAT3 we observed release of labeled intracellular glutamate but did not detect cysteine release. Our results support a model whereby cysteine transport through EAAT3 is facilitated through cysteine de-protonation and that once inside, the thiolate is rapidly re-protonated. Moreover, these findings suggest that cysteine transport is predominantly unidirectional and that reverse transport does not contribute to depletion of intracellular cysteine pools

    Decreased mass specific respiration under experimental warming is robust to the microbial biomass method employed

    Get PDF
    Hartley et al. question whether reduction in Rmass, under experimental warming, arises because of the biomass method. We show the method they treat as independent yields the same result. We describe why the substrate-depletion hypothesis may not solely explain observed responses, and urge caution in interpretation of the seasonal data. © 2009 Blackwell Publishing Ltd/CNRS

    Multilayer metamaterial absorbers inspired by perfectly matched layers

    Get PDF
    We derive periodic multilayer absorbers with effective uniaxial properties similar to perfectly matched layers (PML). This approximate representation of PML is based on the effective medium theory and we call it an effective medium PML (EM-PML). We compare the spatial reflection spectrum of the layered absorbers to that of a PML material and demonstrate that after neglecting gain and magnetic properties, the absorber remains functional. This opens a route to create electromagnetic absorbers for real and not only numerical applications and as an example we introduce a layered absorber for the wavelength of 88~μ\mum made of SiO2_2 and NaCl. We also show that similar cylindrical core-shell nanostructures derived from flat multilayers also exhibit very good absorptive and reflective properties despite the different geometry

    Implementation of Web-Based Respondent-Driven Sampling among Men who Have Sex with Men in Vietnam

    Get PDF
    Objective: Lack of representative data about hidden groups, like men who have sex with men (MSM), hinders an evidence-based response to the HIV epidemics. Respondent-driven sampling (RDS) was developed to overcome sampling challenges in studies of populations like MSM for which sampling frames are absent. Internet-based RDS (webRDS) can potentially circumvent limitations of the original RDS method. We aimed to implement and evaluate webRDS among a hidden population. Methods and Design: This cross-sectional study took place 18 February to 12 April, 2011 among MSM in Vietnam. Inclusion criteria were men, aged 18 and above, who had ever had sex with another man and were living in Vietnam. Participants were invited by an MSM friend, logged in, and answered a survey. Participants could recruit up to four MSM friends. We evaluated the system by its success in generating sustained recruitment and the degree to which the sample compositions stabilized with increasing sample size. Results: Twenty starting participants generated 676 participants over 24 recruitment waves. Analyses did not show evidence of bias due to ineligible participation. Estimated mean age was 22 year and 82% came from the two large metropolitan areas. 32 out of 63 provinces were represented. The median number of sexual partners during the last six months was two. The sample composition stabilized well for 16 out of 17 variables. Conclusion: Results indicate that webRDS could be implemented at a low cost among Internet-using MSM in Vietnam. WebRDS may be a promising method for sampling of Internet-using MSM and other hidden groups. Key words: Respondent-driven sampling, Online sampling, Men who have sex with men, Vietnam, Sexual risk behavio

    Theories for influencer identification in complex networks

    Full text link
    In social and biological systems, the structural heterogeneity of interaction networks gives rise to the emergence of a small set of influential nodes, or influencers, in a series of dynamical processes. Although much smaller than the entire network, these influencers were observed to be able to shape the collective dynamics of large populations in different contexts. As such, the successful identification of influencers should have profound implications in various real-world spreading dynamics such as viral marketing, epidemic outbreaks and cascading failure. In this chapter, we first summarize the centrality-based approach in finding single influencers in complex networks, and then discuss the more complicated problem of locating multiple influencers from a collective point of view. Progress rooted in collective influence theory, belief-propagation and computer science will be presented. Finally, we present some applications of influencer identification in diverse real-world systems, including online social platforms, scientific publication, brain networks and socioeconomic systems.Comment: 24 pages, 6 figure

    Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions

    Get PDF
    During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastroph

    Sexual Arousal Patterns of Identical Twins with Discordant Sexual Orientations

    Get PDF
    Genetically identical twins can differ in their self-reported sexual orientations. However, whether the twins’ subjective reports reflect valid differences in their sexual orientations is unknown. Measures of sexual orientation, which are free of the limitations of self-report, include genital arousal and pupil dilation while viewing sexual stimuli depicting men or women. We examined these responses in 6 male twin pairs and 9 female twin pairs who reported discordant sexual orientations. Across measures, heterosexual male twins responded more strongly to women than to men. Their homosexual co-twins showed an opposite pattern. Heterosexual female twins responded equally to both sexes, whereas their homosexual co-twins responded somewhat more to women than men. These differences within pairs were similar to differences between unrelated heterosexual and homosexual males and females. Our study provides physiological evidence confirming twins’ discordant sexual orientations, thereby supporting the importance of the non-shared environment for the development of sexual orientation and sexual arousal

    Multiscale QM/MM modelling of catalytic systems with ChemShell

    Get PDF
    Hybrid quantum mechanical/molecular mechanical (QM/MM) methods are a powerful computational tool for the investigation of all forms of catalysis, as they allow for an accurate description of reactions occurring at catalytic sites in the context of a complicated electrostatic environment. The scriptable computational chemistry environment ChemShell is a leading software package for QM/MM calculations, providing a flexible, high performance framework for modelling both biomolecular and materials catalysis. We present an overview of recent applications of ChemShell to problems in catalysis and review new functionality introduced into the redeveloped Python-based version of ChemShell to support catalytic modelling. These include a fully guided workflow for biomolecular QM/MM modelling, starting from an experimental structure, a periodic QM/MM embedding scheme to support modelling of metallic materials, and a comprehensive set of tutorials for biomolecular and materials modelling
    corecore