29 research outputs found

    Opsonising antibodies to P. falciparum Merozoites associated with immunity to clinical malaria

    Get PDF
    Naturally acquired humoral immunity to the malarial parasite Plasmodium falciparum can protect against disease, although the precise mechanisms remain unclear. Although antibody levels can be measured by ELISA, few studies have investigated functional antibody assays in relation to clinical outcomes. In this study we applied a recently developed functional assay of antibody-mediated opsonisation of merozoites, to plasma samples from a longitudinal cohort study conducted in a malaria endemic region of Papua New Guinea (PNG). Phagocytic activity was quantified by flow cytometry using a standardized and high-throughput protocol, and was subsequently evaluated for association with protection from clinical malaria and high-density parasitemia. Opsonising antibody responses were found to: i) increase with age, ii) be enhanced by concurrent infection, and iii) correlate with protection from clinical episodes and high-density parasitemia. Stronger protective associations were observed in individuals with no detectable parasitemia at baseline. This study presents the first evidence for merozoite phagocytosis as a correlate of acquired immunity and clinical protection against P. falciparum malaria

    Genome-wide transcriptional profiling of peripheral blood leukocytes from cattle infected with Mycobacterium bovis reveals suppression of host immune genes

    Get PDF
    Background Mycobacterium bovis is the causative agent of bovine tuberculosis (BTB), a pathological infection with significant economic impact. Recent studies have highlighted the role of functional genomics to better understand the molecular mechanisms governing the host immune response to M. bovis infection. Furthermore, these studies may enable the identification of novel transcriptional markers of BTB that can augment current diagnostic tests and surveillance programmes. In the present study, we have analysed the transcriptome of peripheral blood leukocytes (PBL) from eight M. bovis-infected and eight control non-infected age-matched and sex-matched Holstein-Friesian cattle using the AffymetrixÂź GeneChipÂź Bovine Genome Array with 24,072 gene probe sets representing more than 23,000 gene transcripts. Results Control and infected animals had similar mean white blood cell counts. However, the mean number of lymphocytes was significantly increased in the infected group relative to the control group (P = 0.001), while the mean number of monocytes was significantly decreased in the BTB group (P = 0.002). Hierarchical clustering analysis using gene expression data from all 5,388 detectable mRNA transcripts unambiguously partitioned the animals according to their disease status. In total, 2,960 gene transcripts were differentially expressed (DE) between the infected and control animal groups (adjusted P-value threshold ≀ 0.05); with the number of gene transcripts showing decreased relative expression (1,563) exceeding those displaying increased relative expression (1,397). Systems analysis using the IngenuityÂź Systems Pathway Analysis (IPA) Knowledge Base revealed an over-representation of DE genes involved in the immune response functional category. More specifically, 64.5% of genes in the affects immune response subcategory displayed decreased relative expression levels in the infected animals compared to the control group. Conclusions This study demonstrates that genome-wide transcriptional profiling of PBL can distinguish active M. bovis-infected animals from control non-infected animals. Furthermore, the results obtained support previous investigations demonstrating that mycobacterial infection is associated with host transcriptional suppression. These data support the use of transcriptomic technologies to enable the identification of robust, reliable transcriptional markers of active M. bovis infection.This work was supported by Investigator Grants from Science Foundation Ireland (Nos: SFI/01/F.1/B028 and SFI/08/IN.1/B2038), a Research Stimulus Grant from the Department of Agriculture, Fisheries and Food (No: RSF 06 405) and a European Union Framework 7 Project Grant (No: KBBE-211602-MACROSYS). KEK is supported by the Irish Research Council for Science, Engineering and Technology (IRCSET) funded Bioinformatics and Systems Biology PhD Programme http://bioinfo-casl.ucd.ie/PhD

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Mycobacterium avium infection in CD14-deficient mice fails to substantiate a significant role for CD14 in antimycobacterial protection or granulomatous inflammation

    No full text
    CD14 is a pattern-recognition receptor implicated in the inflammatory response to microbial components such as lipopolysaccharide, peptidoglycan and lipoarabinomannan. In this work, we made use of CD14-deficient (CD14−/−) mice to evaluate the relative importance of CD14 in response to infection with viable, intact cells of Mycobacterium avium in vitro and in vivo. Following co-incubation of either bone marrow-derived macrophages (Mφ) or thioglycollate-elicited peritoneal Mφ from CD14−/− mice with viable M. avium, tumour necrosis factor (TNF) production was significantly reduced and delayed compared to TNF secretion by infected CD14+/+ Mφ. However, following intravenous infection with a M. avium strain of either high virulence (TMC724) or intermediate virulence (SE01), there was no difference in the bacterial loads of lungs, livers or spleens at 3, 5 and 8 weeks postinfection in CD14−/− mice when compared with syngeneic CD14+/+ mice. At these time-points, TNF and interferon-Îł (IFN-Îł) mRNA expression in the liver was similar in infected CD14+/+ and CD14−/− mice, and granuloma formation and expression of inducible nitric oxide synthase within granuloma Mφ was the same in both mouse groups. In conclusion, although the absence of CD14 results in significantly reduced and delayed TNF production in response to stimulation with M. avium in vitro, there is no evidence that CD14 plays a significant role in either the antibacterial defence or the chronic granulomatous reaction to M. avium infection in vivo

    Association of pre-transplant statin use with delayed graft function in kidney transplant recipients

    Get PDF
    Background: Administration of HMG-CoA reductase inhibitors (statins), prior to ischemia or prior to reperfusion has been shown to decrease ischemia-reperfusion renal injury in animal studies. It is unknown whether this protective effect is applicable to renal transplantation in humans. The aim of this study was to determine the relationship between prior statin use in renal transplant recipients and the subsequent risk of delayed graft function
    corecore