4,747 research outputs found
Subtle but significant effects of CO<inf>2</inf> acidified seawater on embryos of the intertidal snail, Littorina obtusata
Our understanding of the effects of ocean acidification on whole organism function is growing, but most current information is for adult stages of development. Here, we show the effects of reduced pH seawater (pH 7.6) on aspects of the development, physiology and behaviour of encapsulated embryos of the marine intertidal gastropod Littorina obtusata. We found reduced viability and increased development times under reduced pH conditions, and the embryos had significantly altered behaviours and physiologies. In acidified seawater, embryos spent more time stationary, had slower rotation rates, spent less time crawling, but increased their movement periodicity compared with those maintained under control conditions. Larval and adult heart rates were significantly lower in acidified seawater, and hatchling snails had an altered shell morphology (lateral length and spiral shell length) compared to control snails. Our findings show that ocean acidification may have multiple, subtle effects during the early development of marine animals that may have implications for their survival beyond those predicted using later life stages. © Inter-Research 2009
Differences in the timing of cardio-respiratory development determine whether marine gastropod embryos survive or die in hypoxia.
Physiological plasticity of early developmental stages is a key way by which organisms can survive and adapt to environmental change. We investigated developmental plasticity of aspects of the cardio-respiratory physiology of encapsulated embryos of a marine gastropod,Littorina obtusata, surviving exposure to moderate hypoxia (PO2 =8 kPa) and compared the development of these survivors with that of individuals that died before hatching. Individuals surviving hypoxia exhibited a slower rate of development and altered ontogeny of cardio-respiratory structure and function compared with normoxic controls (PO2 >20 kPa). The onset and development of the larval and adult hearts were delayed in chronological time in hypoxia, but both organs appeared earlier in developmental time and cardiac activity rates were greater. The velum, a transient, 'larval' organ thought to play a role in gas exchange, was larger in hypoxia but developed more slowly (in chronological time), and velar cilia-driven, rotational activity was lower. Despite these effects of hypoxia, 38% of individuals survived to hatching. Compared with those embryos that died during development, these surviving embryos had advanced expression of adult structures, i.e. a significantly earlier occurrence and greater activity of their adult heart and larger shells. In contrast, embryos that died retained larval cardio-respiratory features (the velum and larval heart) for longer in chronological time. Surviving embryos came from eggs with significantly higher albumen provisioning than those that died, suggesting an energetic component for advanced development of adult traits
A high-throughput and open-source platform for embryo phenomics
<div><p>Phenomics has the potential to facilitate significant advances in biology but requires the development of high-throughput technologies capable of generating and analysing high-dimensional data. There are significant challenges associated with building such technologies, not least those required for investigating dynamic processes such as embryonic development, during which high rates of temporal, spatial, and functional change are inherently difficult to capture. Here, we present EmbryoPhenomics, an accessible high-throughput platform for phenomics in aquatic embryos comprising an Open-source Video Microscope (OpenVIM) that produces high-resolution videos of multiple embryos under tightly controlled environmental conditions. These videos are then analysed by the Python package Embryo Computer Vision (EmbryoCV), which extracts phenomic data for morphological, physiological, behavioural, and proxy traits during the process of embryonic development. We demonstrate the broad-scale applicability of EmbryoPhenomics in a series of experiments assessing chronic, acute, and multistressor responses to environmental change (temperature and salinity) in >30 million images of >600 embryos of two species with markedly different patterns of development—the pond snail <i>Radix balthica</i> and the marine amphipod <i>Orchestia gammarellus</i>. The challenge of phenomics is significant but so too are the rewards, and it is particularly relevant to the urgent task of assessing complex organismal responses to current rates of environmental change. EmbryoPhenomics can acquire and process data capturing functional, temporal, and spatial responses in the earliest, most dynamic life stages and is potentially game changing for those interested in studying development and phenomics more widely.</p></div
Both maternal and embryonic exposure to mild hypoxia influence embryonic development of the intertidal gastropod Littorina littorea (Linnaeus, 1758)
There is growing evidence that maternal exposure to environmental stressors can alter offspring phenotype and increase fitness. Here, we investigate the relative and combined effects of maternal and developmental exposure to mild hypoxia (65% and 74% air saturation respectively) on the growth and development of embryos of the marine gastropod Littorina littorea. Differences in embryo morphological traits were driven by the developmental environment, whereas the maternal environment and interactive effects of maternal and developmental environment were the main driver of differences in the timing of developmental events. While developmental exposure to mild hypoxia significantly increased the area of an important respiratory organ, the velum, it significantly delayed hatching of veliger larvae and reduced their size at hatching and overall survival. Maternal exposure had a significant effect on these traits, and interacted with developmental exposure to influence the time of appearance of morphological characters, suggesting that both are important in affecting developmental trajectories. A comparison between embryos that successfully hatched and those that died in mild hypoxia revealed that survivors exhibited hypertrophy in the velum and associated pre-oral cilia suggesting these traits are linked with survival in low oxygen environments. We conclude that both maternal and developmental environments shape offspring phenotype in a species with a complex, developmental life history, and that plasticity in embryo morphology arising from exposure to even small reductions in oxygen tensions impacts the hatching success of these embryos.</jats:p
Spectral phenotyping of embryonic development reveals integrative thermodynamic responses
Abstract Background Energy proxy traits (EPTs) are a novel approach to high dimensional organismal phenotyping that quantify the spectrum of energy levels within different temporal frequencies associated with mean pixel value fluctuations from video. They offer significant potential in addressing the phenotyping bottleneck in biology and are effective at identifying lethal endpoints and measuring specific functional traits, but the extent to which they might contribute additional understanding of the phenotype remains unknown. Consequently, here we test the biological significance of EPTs and their responses relative to fundamental thermodynamic principles. We achieve this using the entire embryonic development of Radix balthica, a freshwater pond snail, at different temperatures (20, 25 & 30 °C) and comparing responses against predictions from Arrhenius’ equation (Q10 = 2). Results We find that EPTs are thermally sensitive and their spectra of frequency response enable effective high-dimensional treatment clustering throughout organismal development. Temperature-specific deviation in EPTs from thermodynamic predictions were evident and indicative of physiological mitigation, although they differed markedly in their responses from manual measures. The EPT spectrum was effective in capturing aspects of the phenotype predictive of biological outcomes, and suggest that EPTs themselves may reflect levels of energy turnover. Conclusions Whole-organismal biology is incredibly complex, and this contributes to the challenge of developing universal phenotyping approaches. Here, we demonstrate the biological relevance of a new holistic approach to phenotyping that is not constrained by preconceived notions of biological importance. Furthermore, we find that EPTs are an effective approach to measuring even the most dynamic life history stages. </jats:sec
Atypical dopamine efflux caused by3,4-methylenedioxypyrovalerone (MDPV) via the human dopamine transporter
Synthetic cathinones are similar in chemical structure to amphetamines, and their behavioral effects are associated with enhanced dopaminergic signaling. The past ten years of research on the common constituent of bath salts, MDPV (the synthetic cathinone 3,4-methylenedioxypyrovalerone), has aided the understanding of how synthetic cathinones act at the dopamine (DA) transporter (DAT). Several groups have described the ability of MDPV to block the DAT with high-affinity. In this study, we demonstrate for the first time, a new mode of action of MDPV, namely its ability to promote DAT-mediated DA efflux. Using single cell amperometric assays, we determined that low concentrations of MDPV (1 nM) can cause reverse transport of DA via DAT. Notably, administration of MDPV leads to hyperlocomotion in Drosophila melanogaster. These data describe further how MDPV acts at the DAT possibly paving the way for novel treatment strategies for individuals who abuse bath salts
Correlated Electrical and Chemical Nanoscale Properties in Potassium-Passivated, Triple-Cation Perovskite Solar Cells
Perovskite semiconductors are an exciting class of materials due to their
promising performance outputs in optoelectronic devices. To boost their
efficiency further, researchers introduce additives during sample synthesis, such as KI. However, it is not well understood how KI changes the material
and, often, leaves precipitants. To fully resolve the role of KI, a multiple
microscopy techniques is applied and the electrical and chemical behavior of a Reference (untreated) and a KI-treated perovskite are compared. Upon correlation between electrical and chemical nanoimaging techniques, it is discovered that these local properties are linked to the macroscopic voltage enhancement of the KI-treated perovskite. The heterogeneity revealed in both the local electrical and chemical responses indicates that the additive partially migrates to the surface, yet surprisingly; does not deteriorate the performance locally, rather, the voltage response homogeneously increases. The research presented within provides a diagnostic methodology, which connects the nanoscale electrical and chemical properties of materials, relevant to other perovskites, including multication and Pb-free alternatives.University of Maryland All-S.T.A.R. Fellowship
Hulka Energy Research Fellowship
National Science Foundation
US Department of Energy
The Royal Society
Office of Naval Researc
Correlated Electrical and Chemical Nanoscale Properties in Potassium-Passivated, Triple-Cation Perovskite Solar Cells
Perovskite semiconductors are an exciting class of materials due to their promising performance outputs in photovoltaic devices. To boost their efficiency further, researchers introduce additives during sample synthesis, such as KI. However, it is not well understood how KI changes the material and, often, leaves precipitants. To fully resolve the role of KI, multiple microscopy techniques are applied and the electrical and chemical behavior of a Reference (untreated) and a KI‐treated perovskite are compared. Upon correlation between electrical and chemical nanoimaging techniques, it is discovered that these local properties are linked to the macroscopic voltage enhancement of the KI‐treated perovskite. The heterogeneity revealed in both the local electrical and chemical responses indicates that the additive partially migrates to the surface, yet surprisingly does not deteriorate the performance locally, rather, the voltage response homogeneously increases. The research presented within provides a diagnostic methodology, which connects the nanoscale electrical and chemical properties of materials, relevant to other perovskites, including multication and Pb‐free alternatives
- …