2,498 research outputs found

    Comments on black holes I: The possibility of complementarity

    Get PDF
    We comment on a recent paper of Almheiri, Marolf, Polchinski and Sully who argue against black hole complementarity based on the claim that an infalling observer 'burns' as he approaches the horizon. We show that in fact measurements made by an infalling observer outside the horizon are statistically identical for the cases of vacuum at the horizon and radiation emerging from a stretched horizon. This forces us to follow the dynamics all the way to the horizon, where we need to know the details of Planck scale physics. We note that in string theory the fuzzball structure of microstates does not give any place to 'continue through' this Planck regime. AMPS argue that interactions near the horizon preclude traditional complementarity. But the conjecture of 'fuzzball complementarity' works in the opposite way: the infalling quantum is absorbed by the fuzzball surface, and it is the resulting dynamics that is conjectured to admit a complementary description.Comment: 34 pages, 6 figures, v3: clarifications & references adde

    Excitations in the deformed D1D5 CFT

    Get PDF
    We perform some simple computations for the first order deformation of the D1D5 CFT off its orbifold point. It had been shown earlier that under this deformation the vacuum state changes to a squeezed state (with the further action of a supercharge). We now start with states containing one or two initial quanta and write down the corresponding states obtained under the action of deformation operator. The result is relevant to the evolution of an initial excitation in the CFT dual to the near extremal D1D5 black hole: when a left and a right moving excitation collide in the CFT, the deformation operator spreads their energy over a larger number of quanta, thus evolving the state towards the infrared.Comment: 26 pages, Latex, 4 figure

    Gene3D: expanding the utility of domain assignments

    Get PDF
    Gene3D http://gene3d.biochem.ucl.ac.uk is a database of domain annotations of Ensembl and UniProtKB protein sequences. Domains are predicted using a library of profile HMMs representing 2737 CATH superfamilies. Gene3D has previously featured in the Database issue of NAR and here we report updates to the website and database. The current Gene3D (v14) release has expanded its domain assignments to ∼20 000 cellular genomes and over 43 million unique protein sequences, more than doubling the number of protein sequences since our last publication. Amongst other updates, we have improved our Functional Family annotation method. We have also improved the quality and coverage of our 3D homology modelling pipeline of predicted CATH domains. Additionally, the structural models have been expanded to include an extra model organism (Drosophila melanogaster). We also document a number of additional visualization tools in the Gene3D website

    Intertwining Relations for the Deformed D1D5 CFT

    Full text link
    The Higgs branch of the D1D5 system flows in the infrared to a two-dimensional N=(4,4) SCFT. This system is believed to have an "orbifold point" in its moduli space where the SCFT is a free sigma model with target space the symmetric product of copies of four-tori; however, at the orbifold point gravity is strongly coupled and to reach the supergravity point one needs to turn on the four exactly marginal deformations corresponding to the blow-up modes of the orbifold SCFT. Recently, technology has been developed for studying these deformations and perturbing the D1D5 CFT off its orbifold point. We present a new method for computing the general effect of a single application of the deformation operators. The method takes the form of intertwining relations that map operators in the untwisted sector before application of the deformation operator to operators in the 2-twisted sector after the application of the deformation operator. This method is computationally more direct, and may be of theoretical interest. This line of inquiry should ultimately have relevance for black hole physics.Comment: latex, 23 pages, 3 figure

    Deforming the D1D5 CFT away from the orbifold point

    Get PDF
    The D1D5 brane bound state is believed to have an `orbifold point' in its moduli space which is the analogue of the free Yang Mills theory for the D3 brane bound state. The supergravity geometry generated by D1 and D5 branes is described by a different point in moduli space, and in moving towards this point we have to deform the CFT by a marginal operator: the `twist' which links together two copies of the CFT. In this paper we find the effect of this deformation operator on the simplest physical state of the CFT -- the Ramond vacuum. The twist deformation leads to a final state that is populated by pairs of excitations like those in a squeezed state. We find the coefficients characterizing the distribution of these particle pairs (for both bosons and fermions) and thus write this final state in closed form.Comment: 30 pages, 4 figures, Late

    Emission from the D1D5 CFT: Higher Twists

    Full text link
    We study a certain class of nonextremal D1D5 geometries and their ergoregion emission. Using a detailed CFT computation and the formalism developed in arXiv:0906.2015 [hep-th], we compute the full spectrum and rate of emission from the geometries and find exact agreement with the gravity answer. Previously, only part of the spectrum had been reproduced using a CFT description. We close with a discussion of the context and significance of the calculation.Comment: 39 pages, 6 figures, late

    Prediction of anti-Alzheimer’s activity of flavonoids targeting acetylcholinesterase in silico

    Get PDF
    Introduction – Prenylated and pyrano-flavonoids of the genus Artocarpus J. R. Forster & G. Forster are well known for their acetylcholinesterase (AchE) inhibitory, anticholinergic, antiinflammatory, antimicrobial, antioxidant, antiproliferative and tyrosinase inhibitory activities. Some of these compounds have also been shown to be effective against Alzheimer’s disease. Objective – The aim of the in silico study was to establish protocols to predict the most effective flavonoid from prenylated and pyrano-flavonoid classes for AchE inhibition linking to the potential treatment of Alzheimer’s disease. Methodology – Three flavonoids isolated from Artocarpus anisophyllus Miq. were selected for the study. With these compounds, Lipinski filter, ADME/Tox screening, molecular docking and QSAR were performed in silico. In vitro activity was evaluated by bioactivity staining based on the Ellman’s method. Results – In the Lipinski filter and ADME/Tox screening, all test compounds produced positive results, but in the target fishing, only one flavonoid could successfully target AchE. Molecular docking was performed on this flavonoid, and this compound gained the score as -13.5762. From the QSAR analysis the IC50 was found to be 1659.59 nM. Again, 100 derivatives were generated from the parent compound and docking was performed. The derivative number 20 was the best scorer i.e., -31.6392 and IC50 was predicted as 6.025 nM. Conclusion – Results indicated that flavonoids could be efficient inhibitors of AchE and thus, could be useful in the management of Alzheimer’s disease

    Silicon-based spin and charge quantum computation

    Full text link
    Silicon-based quantum-computer architectures have attracted attention because of their promise for scalability and their potential for synergetically utilizing the available resources associated with the existing Si technology infrastructure. Electronic and nuclear spins of shallow donors (e.g. phosphorus) in Si are ideal candidates for qubits in such proposals due to the relatively long spin coherence times. For these spin qubits, donor electron charge manipulation by external gates is a key ingredient for control and read-out of single-qubit operations, while shallow donor exchange gates are frequently invoked to perform two-qubit operations. More recently, charge qubits based on tunnel coupling in P2+_2^+ substitutional molecular ions in Si have also been proposed. We discuss the feasibility of the building blocks involved in shallow donor quantum computation in silicon, taking into account the peculiarities of silicon electronic structure, in particular the six degenerate states at the conduction band edge. We show that quantum interference among these states does not significantly affect operations involving a single donor, but leads to fast oscillations in electron exchange coupling and on tunnel-coupling strength when the donor pair relative position is changed on a lattice-parameter scale. These studies illustrate the considerable potential as well as the tremendous challenges posed by donor spin and charge as candidates for qubits in silicon.Comment: Review paper (invited) - to appear in Annals of the Brazilian Academy of Science

    New D1-D5-P geometries from string amplitudes

    Full text link
    We derive the long range supergravity fields sourced by a D1-D5-P bound state from disk amplitudes for massless closed string emission. We suggest that since the parameter controlling the string perturbation expansion for this calculation decreases with distance from the bound state, the resulting asymptotic fields are valid even in the regime of parameters in which there is a classical black hole solution with the same charges. The supergravity fields differ from the black hole solution by multipole moments and are more general than those contained within known classes of solutions in the literature, whilst still preserving four supersymmetries. Our results support the conjecture that the black hole solution should be interpreted as a coarse-grained description rather than an exact description of the gravitational field sourced by D1-D5-P bound states in this regime of parameters.Comment: 48 pages, 2 figures, v2: typos correcte

    Geochemical characterization of oceanic basalts using Artificial Neural Network

    Get PDF
    The geochemical discriminate diagrams help to distinguish the volcanics recovered from different tectonic settings but these diagrams tend to group the ocean floor basalts (OFB) under one class i.e., as mid-oceanic ridge basalts (MORB). Hence, a method is specifically needed to identify the OFB as normal (N-MORB), enriched (E-MORB) and ocean island basalts (OIB)
    corecore