1,803 research outputs found
Antibiotic-resistant Escherichia coli in wastewaters, surface waters, and oysters from an urban riverine system
antibiotic resistance (AR) patterns of 462 Escherichia coli isolates from wastewater, surface waters, and oysters were determined. Rates of AR and multiple-AR among isolates from surface water sites adjacent to wastewater treatment plant (WWTP) discharge sites were significantly higher (P < 0.05) than those among other isolates, whereas the rate of AR among isolates from oysters exposed to WWTP discharges was low (< lKc)
RINGO3: a multi-colour fast response polarimeter
GRB jets contain rapidly moving electrons which will spiral around magnetic field lines. This causes them to emit polarized synchrotron emission. We have built a series of polarimeters (RINGO and RINGO2) to investigate this by measuring the polarization of optical light from GRBs at a certain single wavelength. The instruments are mounted on the Liverpool Telescope, which is a fully robotic (i.e. unmanned) telescope on La Palma which reacts to triggers from satellites such as the NASA SWIFT mission. This has had great success, with the first ever detections of early time optical polarization being made. In addition, the first measurements of the change in optical polarization from a GRB as the jet expands have recently been obtained. In this paper we describe the design and construction of RINGO3. This will be a multi-colour instrument that can observe simultaneously at three wavelengths. By doing so we will be able to unambiguously identify where in the burst the polarized emission is coming from. This will allow us to distinguish between three possibilities: (1) Magnetic instabilities generated in the shock front, (2) Line of sight effects and (3) Large-scale magnetic fields present throughout the relativistic outflow. The instrument design combines a rapidly rotating polaroid, specially designed polarization insensitive dichroic mirrors and three electron multiplying CCD cameras to provide simultaneous wavelength coverage with a time resolution of 1 second
RINGO2: an EMCCD-based polarimeter for GRB followup
We describe the design and construction of a new novel optical polarimeter (RINGO2) for the Liverpool Telescope. The instrument is designed for rapid (< 3 minute) followup observations of Gamma Ray Bursts in order to measure the early time polarization and time evolution on timescales of ~ 1 - 10000 seconds. By using a fast rotating Polaroid whose rotation is synchronized to control the readout of an electron multiplying CCD eight times per revolution, we can rebin our data in the time domain after acquisition with little noise penalty, thereby allowing us to explore the polarization evolution of these rapidly variable objects for the first time.
© (2010) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only
Uncooled Microbolometer Arrays for Ground Based Astronomy
We describe the design and commissioning of a simple prototype, low-cost 10 μm imaging instrument. The system is built using commercially available components including an uncooled microbolometer array as a detector. The incorporation of adjustable germanium reimaging optics rescale the image to the appropriate plate scale for the 2 m diameter Liverpool Telescope. From observations of bright Solar system and stellar sources, we demonstrate a plate scale of 0.75 arcsec per pixel and confirm the optical design allows diffraction limited imaging. We record a ∼10 percent photometric stability due to sky variability. We measure a 3σ sensitivity of 7 × 103 Jy for a single, ∼0.11 s exposure. This corresponds to a sensitivity limit of 3 × 102 Jy for a 60 s total integration. We present an example science case from observations of the 2019 January total lunar eclipse and show that the system can detect and measure the anomalous cooling rate associated with the features Bellot and Langrenus during eclipse
IO:I, a near-infrared camera for the Liverpool Telescope
IO:I is a new instrument that has recently been commissioned for the Liverpool Telescope, extending current imaging capabilities beyond the optical and into the near-infrared. Cost has been minimized by the use of a previously decommissioned instrument's cryostat as the base for a prototype and retrofitting it with Teledyne's 1.7-μm cutoff Hawaii-2RG HgCdTe detector, SIDECAR ASIC controller, and JADE2 interface card. The mechanical, electronic, and cryogenic aspects of the cryostat retrofitting process will be reviewed together with a description of the software/hardware setup. This is followed by a discussion of the results derived from characterization tests, including measurements of read noise, conversion gain, full well depth, and linearity. The paper closes with a brief overview of the autonomous data reduction process and the presentation of results from photometric testing conducted on on-sky, pipeline processed data. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)
Preventable cancer mortality in American Indian and Alaska Native women.
This report describes a series of six studies on cancer in American Indian and Alaska Native (AI/AN) women, with a particular emphasis on cancer of the breast and cervix. Data from the Indian Health Service (IHS) inpatient data system was used to generate estimates of incidence of cancer among AI/AN populations. Additionally, breast cancer rates among Indian women in Arizona and New Mexico were compiled from extensive chart review of the New Mexico Tumor Registry and the IHS Inpatient Data System. Study of the performance of the health care system for cancer screening in women suggest that the major deficiency lies not in a failure to bring women in for screening, but rather to complete the screening after contact has been made and the need for screening recognized. The studies indicate that cancer is generally diagnosed in American Indian women at a more advanced stage and survival experience of Indian cancer patients is worse than non-Indian, even when corrected for later stage at diagnosis. Several of the studies suggest that failure to diagnose cancer in its very early stages appears to be in large part dependent on patient behavior. An alarming number of women do not keep follow-up appointments, even after multiple referrals and rescheduling of appointments. These findings suggest the need for intervention strategies that encourage women to become knowledgeable about cancer and to accept responsibility for their screening. The studies suggest that the relative difficulty in improving screening rates are traced to an inadequate understanding of cancer and its prevention on the part of women in the community
Liverpool Telescope 2: a new robotic facility for time domain astronomy in 2020
The robotic 2m Liverpool Telescope, based on the Canary island of La Palma, has a diverse instrument suite and a strong track record in time domain science, with highlights including early time photometry and spectra of supernovae, measurements of the polarization of gamma-ray burst afterglows, and high cadence light curves of transiting extrasolar planets. In the next decade the time domain will become an increasingly prominent part of the astronomical agenda with new facilities such as LSST, SKA, CTA and Gaia, and promised detections of astrophysical gravitational wave and neutrino sources opening new windows on the transient universe. To capitalise on this exciting new era we intend to build Liverpool Telescope 2: a new robotic facility on La Palma dedicated to time domain science. The next generation of survey facilities will discover large numbers of new transient sources, but there will be a pressing need for follow-up observations for scientific exploitation, in particular spectroscopic follow-up. Liverpool Telescope 2 will have a 4-metre aperture, enabling optical/infrared spectroscopy of faint objects. Robotic telescopes are capable of rapid reaction to unpredictable phenomena, and for fast-fading transients like gamma-ray burst afterglows. This rapid reaction enables observations which would be impossible on less agile telescopes of much larger aperture. We intend Liverpool Telescope 2 to have a world-leading response time, with the aim that we will be taking data with a few tens of seconds of receipt of a trigger from a ground- or space-based transient detection facility. We outline here our scientific goals and present the results of our preliminary optical design studies. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only
SPRAT: Spectrograph for the Rapid Acquisition of Transients
We describe the development of a low cost, low resolution (R ~ 350), high throughput, long slit spectrograph covering visible (4000-8000) wavelengths. The spectrograph has been developed for fully robotic operation with the Liverpool Telescope (La Palma). The primary aim is to provide rapid spectral classification of faint (V ∼ 20) transient objects detected by projects such as Gaia, iPTF (intermediate Palomar Transient Factory), LOFAR, and a variety of high energy satellites. The design employs a volume phase holographic (VPH) transmission grating as the dispersive element combined with a prism pair (grism) in a linear optical path. One of two peak spectral sensitivities are selectable by rotating the grism. The VPH and prism combination and entrance slit are deployable, and when removed from the beam allow the collimator/camera pair to re-image the target field onto the detector. This mode of operation provides automatic acquisition of the target onto the slit prior to spectrographic observation through World Coordinate System fitting. The selection and characterisation of optical components to maximise photon throughput is described together with performance predictions. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only
A low-cost chopping system and uncooled microbolometer array for ground-based astronomy
Mid-Infrared imaging is vital for the study of a wide variety of astronomical phenomena, including evolved stars, exoplanets, and dust enshrouded processes such as star formation in galaxies. However, infrared detectors have traditionally been expensive and it is difficult to achieve the sensitivity needed to see beyond the overwhelming mid-infrared background. Here we describe the upgrade and commissioning of a simple prototype, low-cost 10 μ m imaging instrument. The system was built using commercially available components including an uncooled microbolometer focal plane array and chopping system. The system was deployed for a week on the 1.52 m Carlos Sanchez Telescope and used to observe several very bright mid-infrared sources with catalogue fluxes down to ∼600 Jy. We report a sensitivity improvement of ∼4 mag over our previous unchopped observations, in line with our earlier predictions
Black Hole Deconstruction
A D4-D0 black hole can be deconstructed into a bound state of D0 branes with
a D6-anti-D6 pair containing worldvolume fluxes. The exact spacetime solution
is known and resembles a D0 accretion disk surrounding a D6-anti-D6 core. We
find a scaling limit in which the disk and core drop inside an AdS_2 throat.
Crossing this AdS_2 throat and the D0 accretion disk into the core, we find a
second scaling region describing the D6-anti-D6 pair. It is shown that the
M-theory lift of this region is AdS_3 x S^2. Surprisingly, time translations in
the far asymptotic region reduce to global, rather than Poincare, time
translations in this core AdS_3. We further find that the quantum mechanical
ground state degeneracy reproduces the Bekenstein-Hawking entropy-area law.Comment: 11 page
- …