2,136 research outputs found
RINGO3: a multi-colour fast response polarimeter
GRB jets contain rapidly moving electrons which will spiral around magnetic field lines. This causes them to emit polarized synchrotron emission. We have built a series of polarimeters (RINGO and RINGO2) to investigate this by measuring the polarization of optical light from GRBs at a certain single wavelength. The instruments are mounted on the Liverpool Telescope, which is a fully robotic (i.e. unmanned) telescope on La Palma which reacts to triggers from satellites such as the NASA SWIFT mission. This has had great success, with the first ever detections of early time optical polarization being made. In addition, the first measurements of the change in optical polarization from a GRB as the jet expands have recently been obtained. In this paper we describe the design and construction of RINGO3. This will be a multi-colour instrument that can observe simultaneously at three wavelengths. By doing so we will be able to unambiguously identify where in the burst the polarized emission is coming from. This will allow us to distinguish between three possibilities: (1) Magnetic instabilities generated in the shock front, (2) Line of sight effects and (3) Large-scale magnetic fields present throughout the relativistic outflow. The instrument design combines a rapidly rotating polaroid, specially designed polarization insensitive dichroic mirrors and three electron multiplying CCD cameras to provide simultaneous wavelength coverage with a time resolution of 1 second
Next-to-leading order QCD corrections to Higgs boson production in association with a photon via weak-boson fusion at the LHC
Higgs boson production in association with a hard central photon and two
forward tagging jets is expected to provide valuable information on Higgs boson
couplings in a range where it is difficult to disentangle weak-boson fusion
processes from large QCD backgrounds. We present next-to-leading order QCD
corrections to Higgs production in association with a photon via weak-boson
fusion at a hadron collider in the form of a flexible parton-level Monte Carlo
program. The QCD corrections to integrated cross sections are found to be small
for experimentally relevant selection cuts, while the shape of kinematic
distributions can be distorted by up to 20% in some regions of phase space.
Residual scale uncertainties at next-to-leading order are at the few-percent
level.Comment: 17 pages, 7 figures, 1 tabl
NLO QCD corrections to WZ+jet production with leptonic decays
We compute the next-to-leading order QCD corrections to WZ+jet production at
the Tevatron and the LHC, including decays of the electroweak bosons to light
leptons with all off-shell effects taken into account. The corrections are
sizable and have significant impact on the differential distributions.Comment: 14 pages, 7 figure
Complete experimental toolbox for alignment-free quantum communication
Quantum communication employs the counter-intuitive features of quantum
physics to perform tasks that are im- possible in the classical world. It is
crucial for testing the foundations of quantum theory and promises to rev-
olutionize our information and communication technolo- gies. However, for two
or more parties to execute even the simplest quantum transmission, they must
establish, and maintain, a shared reference frame. This introduces a
considerable overhead in communication resources, par- ticularly if the parties
are in motion or rotating relative to each other. We experimentally demonstrate
how to circumvent this problem with the efficient transmission of quantum
information encoded in rotationally invariant states of single photons. By
developing a complete toolbox for the efficient encoding and decoding of
quantum infor- mation in such photonic qubits, we demonstrate the fea- sibility
of alignment-free quantum key-distribution, and perform a proof-of-principle
alignment-free entanglement distribution and violation of a Bell inequality.
Our scheme should find applications in fundamental tests of quantum mechanics
and satellite-based quantum communication.Comment: Main manuscript: 7 pages, 3 figures; Supplementary Information: 7
pages, 3 figure
Quantifying The Causes of Differences in Tropospheric OH within Global Models
The hydroxyl radical (OH) is the primary daytime oxidant in the troposphere and provides the main loss mechanism for many pollutants and greenhouse gases, including methane (CH4). Global mean tropospheric OH differs by as much as 80% among various global models, for reasons that are not well understood. We use neural networks (NNs), trained using archived output from eight chemical transport models (CTMs) that participated in the POLARCAT Model Intercomparison Project (POLMIP), to quantify the factors responsible for differences in tropospheric OH and resulting CH4 lifetime (τCH4) between these models. Annual average τCH4, for loss by OH only, ranges from 8.0–11.6 years for the eight POLMIP CTMs. The factors driving these differences were quantified by inputting 3-D chemical fields from one CTM into the trained NN of another CTM. Across all CTMs, the largest mean differences in τCH4 (ΔτCH4) result from variations in chemical mechanisms (ΔτCH4 = 0.46 years), the photolysis frequency (J) of O3→O(1D) (0.31 years), local O3 (0.30 years), and CO (0.23 years). The ΔτCH4 due to CTM differences in NOx (NO + NO2) is relatively low (0.17 years), though large regional variation in OH between the CTMs is attributed to NOx. Differences in isoprene and J(NO2) have negligible overall effect on globally averaged tropospheric OH, though the extent of OH variations due to each factor depends on the model being examined. This study demonstrates that NNs can serve as a useful tool for quantifying why tropospheric OH varies between global models, provided essential chemical fields are archived
Long term time variability of cosmic rays and possible relevance to the development of life on Earth
An analysis is made of the manner in which the cosmic ray intensity at Earth
has varied over its existence and its possible relevance to both the origin and
the evolution of life. Much of the analysis relates to the 'high energy' cosmic
rays () and their variability due to the changing
proximity of the solar system to supernova remnants which are generally
believed to be responsible for most cosmic rays up to PeV energies. It is
pointed out that, on a statistical basis, there will have been considerable
variations in the likely 100 My between the Earth's biosphere reaching
reasonable stability and the onset of very elementary life. Interestingly,
there is the increasingly strong possibility that PeV cosmic rays are
responsible for the initiation of terrestrial lightning strokes and the
possibility arises of considerable increases in the frequency of lightnings and
thereby the formation of some of the complex molecules which are the 'building
blocks of life'. Attention is also given to the well known generation of the
oxides of nitrogen by lightning strokes which are poisonous to animal life but
helpful to plant growth; here, too, the violent swings of cosmic ray
intensities may have had relevance to evolutionary changes. A particular
variant of the cosmic ray acceleration model, put forward by us, predicts an
increase in lightning rate in the past and this has been sought in Korean
historical records. Finally, the time dependence of the overall cosmic ray
intensity, which manifests itself mainly at sub-10 GeV energies, has been
examined. The relevance of cosmic rays to the 'global electrical circuit'
points to the importance of this concept.Comment: 18 pages, 5 figures, accepted by 'Surveys in Geophysics
Recommended from our members
The influence of the accessory genome on bacterial pathogen evolution
Bacterial pathogens exhibit significant variation in their genomic content of virulence factors. This reflects the abundance of strategies pathogens evolved to infect host organisms by suppressing host immunity. Molecular arms-races have been a strong driving force for the evolution of pathogenicity, with pathogens often encoding overlapping or redundant functions, such as type III protein secretion effectors and hosts encoding ever more sophisticated immune systems. The pathogens’ frequent exposure to other microbes, either in their host or in the environment, provides opportunities for the acquisition or interchange of mobile genetic elements. These DNA elements accessorise the core genome and can play major roles in shaping genome structure and altering the complement of virulence factors. Here, we review the different mobile genetic elements focusing on the more recent discoveries and highlighting their role in shaping bacterial pathogen evolution
How khipus indicated labour contributions in an Andean village: an explanation of colour banding, seriation and ethnocategories
This research was supported by a Global Exploration Grant from the National Geographic Society (GEFNE120-14).New archival and ethnographic evidence reveals that Inka style khipus were used in the Andean community of Santiago de Anchucaya to record contributions to communal labour obligations until the 1940s. Archival testimony from the last khipu specialist in Anchucaya, supplemented by interviews with his grandson, provides the first known expert explanation for how goods, labour obligations, and social groups were indicated on Inka style Andean khipus. This evidence, combined with the analysis of Anchucaya khipus in the Museo Nacional de Arqueología, Antropología y Historia Peruana, furnishes a local model for the relationship between the two most frequent colour patterns (colour banding and seriation) that occur in khipus. In this model, colour banding is associated with individual data whilst seriation is associated with aggregated data. The archival and ethnographic evidence also explains how labour and goods were categorized in uniquely Andean ways as they were represented on khipus.PostprintPeer reviewe
Thermodynamics and Instabilities of a Strongly Coupled Anisotropic Plasma
We extend our analysis of a IIB supergravity solution dual to a spatially
anisotropic finite-temperature N=4 super Yang-Mills plasma. The solution is
static, possesses an anisotropic horizon, and is completely regular. The full
geometry can be viewed as a renormalization group flow from an AdS geometry in
the ultraviolet to a Lifshitz-like geometry in the infrared. The anisotropy can
be equivalently understood as resulting from a position-dependent theta-term or
from a non-zero number density of dissolved D7-branes. The holographic stress
tensor is conserved and anisotropic. The presence of a conformal anomaly plays
an important role in the thermodynamics. The phase diagram exhibits homogeneous
and inhomogeneous (i.e. mixed) phases. In some regions the homogeneous phase
displays instabilities reminiscent of those of weakly coupled plasmas. We
comment on similarities with QCD at finite baryon density and with the
phenomenon of cavitation.Comment: 62 pages, 13 figures; v2: typos fixed, added reference
Probing strongly coupled anisotropic plasma
We calculate the static potential, the drag force and the jet quenching
parameter in strongly coupled anisotropic N=4 super Yang-Mills plasma. We find
that the jet quenching is in general enhanced in presence of anisotropy
compared to the isotropic case and that its value depends strongly on the
direction of the moving quark and the direction along which the momentum
broadening occurs. The jet quenching is strongly enhanced for a quark moving
along the anisotropic direction and momentum broadening happens along the
transverse one. The parameter gets lower for a quark moving along the
transverse direction and the momentum broadening considered along the
anisotropic one. Finally, a weaker enhancement is observed when the quark moves
in the transverse plane and the broadening occurs on the same plane. The drag
force for quark motion parallel to the anisotropy is always enhanced. For
motion in the transverse space the drag force is enhanced compared to the
isotropic case only for quarks having velocity above a critical value. Below
this critical value the force is decreased. Moreover, the drag force along the
anisotropic direction is always stronger than the force in the transverse
space. The diffusion time follows exactly the inverse relations of the drag
forces. The static potential is decreased and stronger decrease observed for
quark-antiquark pair aligned along the anisotropic direction than the
transverse one. We finally comment on our results and elaborate on their
similarities and differences with the weakly coupled plasmas.Comment: 1+44 pages, 18 Figures; Added results on static force; Added
references; version published in JHE
- …
