3,238 research outputs found
Cd-vacancy and Cd-interstitial complexes in Si and Ge
The electrical field gradient (EFG), measured e.g. in perturbed angular
correlation (PAC) experiments, gives particularly useful information about the
interaction of probe atoms like 111In / 111Cd with other defects. The
interpretation of the EFG is, however, a difficult task. This paper aims at
understanding the interaction of Cd impurities with vacancies and interstitials
in Si and Ge, which represents a controversial issue. We apply two
complementary ab initio methods in the framework of density functional theory
(DFT), (i) the all electron Korringa-Kohn-Rostoker (KKR) Greenfunction method
and (ii) the Pseudopotential-Plane-Wave (PPW) method, to search for the correct
local geometry. Surprisingly we find that both in Si and Ge the substitutional
Cd-vacancy complex is unstable and relaxes to a split-vacancy complex with the
Cd on the bond-center site. This complex has a very small EFG, allowing a
unique assignment of the small measured EFGs of 54MHz in Ge and 28MHz in Si.
Also, for the Cd-selfinterstitial complex we obtain a highly symmetrical split
configuration with large EFGs, being in reasonable agreement with experiments
The State of Practice of Mobile Learning in Universitas Terbuka Indonesia
As a distance learning university, Universitas Terbuka (UT) uses mobile technology as an integral part of its online learning system. In addition to its mobile-interfacewebsite, online tutorials are also made accessible through mobile as well as handheld devices. In other words, UT students can literally study through their mobile devices from thevery first activity of registering for courses, paying the tuition fee, obtaining digital learning materials, accessing the digital library, reading online journals, as well as participating in online tutorials.With the continuous development of increasingly sophisticated smartphone technologies, it is important for UT to continuously improve its online learning system. The development of UT’s mobile learning, which was started in 2013, has gone through several phases. The first phase was the preparation of infrastructure, which includes the development of applications and frameworks. The second phase wasthe content development, which wasdone by the faculty using various media including text, audio, video, multimedia, and the utilisation of Open Education Resources (OER). The last and third phase wasthe program delivery, which involves tutors, technical/IT assistants, and other support systems to allow studentswith seamless accessto mobile learning using various mobile devices. This seems to be effective as shown by the data that demonstratesUT mobile learning is being accessed by students using different mobile devices with variousoperating systems.This chapter will give a glance on the state of practice of mobile learning in Indonesia as well as elaborate on the process and practice of mobile learning at Universitas Terbuka (The Indonesia Open University) as a dedicated distance learning university
Cardiovascular Applications of Hyperpolarized MRI
Many applications of MRI are limited by an inherently low sensitivity. Previous attempts to overcome this insensitivity have focused on the use of MRI systems with stronger magnetic fields. However, the gains that can be achieved in this way are relatively small and increasing the magnetic field invariably leads to greater technical challenges. More recently, the development of a range of techniques, which can be gathered under the umbrella term of “hyperpolarization,” has offered potential solutions to the low sensitivity. Hyperpolarization techniques have been demonstrated to temporarily increase the signal available in an MRI experiment by as much as 100,000-fold. This article outlines the main hyperpolarization techniques that have been proposed and explains how they can increase MRI signals. With particular emphasis on the emerging technique of dynamic nuclear polarization, the existing preclinical cardiovascular applications are reviewed and the potential for clinical translation is discussed
Comparison of Isoscalar Vector Meson Production Cross Sections in Proton-Proton Collisions
The reaction was investigated with the TOF
spectrometer, which is an external experiment at the accelerator COSY
(Forschungszentrum J\"ulich, Germany). Total as well as differential cross
sections were determined at an excess energy of (). Using the total cross section of for the
reaction determined here and existing data for the reaction
, the ratio
turns out to be
significantly larger than expected by the Okubo-Zweig-Iizuka (OZI) rule. The
uncertainty of this ratio is considerably smaller than in previous
determinations. The differential distributions show that the
production is still dominated by S-wave production at this excess energy,
however higher partial waves clearly contribute. A comparison of the measured
angular distributions for production to published distributions for
production at shows that the data are consistent with an
identical production mechanism for both vector mesons
Lignin biomarkers as tracers of mercury sources in lakes water column
This study presents the role of specific terrigenous organic compounds as important vectors of mercury (Hg) transported from watersheds to lakes of the Canadian boreal forest. In order to differentiate the autochthonous from the allochthonous organic matter (OM), lignin derived biomarker signatures [Lambda, S/V, C/V, P/(V ? S), 3,5-Bd/V and (Ad/Al)v] were used. Since lignin is exclusively produced by terrigenous plants, this approach can give a non equivocal picture of the watershed inputs to the lakes. Moreover, it allows a characterization of the source of OM and its state of degradation. The water column of six lakes from the Canadian Shield was sampled monthly between June and September 2005. Lake total dissolved Hg concentrations and Lambda were positively correlated, meaning that Hg and ligneous inputs are linked (dissolved OM r2 = 0.62, p\0.0001; particulate OM r2 = 0.76, p\0.0001). Ratios of P/(V ? S) and 3,5-Bd/V from both dissolved OM and particulate OM of the water column suggest an inverse relationship between the progressive state of pedogenesis and maturation of the OM in soil before entering the lake, and the Hg concentrations in the water column. No relation was found between Hg levels in the lakes and the watershed flora composition—angiosperm versus gymnosperm or woody versus non-woody compounds. This study has significant implications for watershed management of ecosystems since limiting fresh terrestrial OM inputs should reduce Hg inputs to the aquatic systems. This is particularly the case for largescale land-use impacts, such as deforestation, agriculture and urbanization, associated to large quantities of soil OM being transferred to aquatic systems
Production of mesons in proton-proton collisions
The cross section for the production of mesons in proton-proton
collisions has been measured in a previously unexplored region of incident
energies. Cross sections were extracted at 92 MeV and 173 MeV excess energy,
respectively. The angular distribution of the at =173 MeV is
strongly anisotropic, demonstrating the importance of partial waves beyond pure
s-wave production at this energy.Comment: 12 pages, 4 figures submitted to Physics Letters B v2: figure 1
added, discussion detailing the data analysis, figure 3 (fig. 2 in v1)
modified in line styles and systematic errors displayed on dat
Neural correlates of enhanced visual short-term memory for angry faces: An fMRI study
Copyright: © 2008 Jackson et al.Background: Fluid and effective social communication requires that both face identity and emotional expression information are encoded and maintained in visual short-term memory (VSTM) to enable a coherent, ongoing picture of the world and its players. This appears to be of particular evolutionary importance when confronted with potentially threatening displays of emotion - previous research has shown better VSTM for angry versus happy or neutral face identities.Methodology/Principal Findings: Using functional magnetic resonance imaging, here we investigated the neural correlates of this angry face benefit in VSTM. Participants were shown between one and four to-be-remembered angry, happy, or neutral faces, and after a short retention delay they stated whether a single probe face had been present or not in the previous display. All faces in any one display expressed the same emotion, and the task required memory for face identity. We find enhanced VSTM for angry face identities and describe the right hemisphere brain network underpinning this effect, which involves the globus pallidus, superior temporal sulcus, and frontal lobe. Increased activity in the globus pallidus was significantly correlated with the angry benefit in VSTM. Areas modulated by emotion were distinct from those modulated by memory load.Conclusions/Significance: Our results provide evidence for a key role of the basal ganglia as an interface between emotion and cognition, supported by a frontal, temporal, and occipital network.The authors were supported by a Wellcome Trust grant (grant number 077185/Z/05/Z) and by BBSRC (UK) grant BBS/B/16178
Gastrin-releasing peptide receptor-based targeting using bombesin analogues is superior to metabolism-based targeting using choline for in vivo imaging of human prostate cancer xenografts
Purpose: Prostate cancer (PC) is a major health problem. Overexpression of the gastrin-releasing peptide receptor (GRPR) in PC, but not in the hyperplastic prostate, provides a promising target for staging and monitoring of PC. Based on the assumption that cancer cells have increased metabolic activity, metabolism-based tracers are also being used for PC imaging. We compared GRPR-based targeting using the68Ga-labelled bombesin analogue AMBA with metabolism-based tar
In Vivo Carbon-13 Dynamic MRS and MRSI of Normal and Fasted Rat Liver with Hyperpolarized 13C-Pyruvate
BACKGROUND: The use of in vivo (13)C nuclear magnetic resonance spectroscopy in probing metabolic pathways to study normal metabolism and characterize disease physiology has been limited by its low sensitivity. However, recent technological advances have enabled greater than 50,000-fold enhancement of liquid-state polarization of metabolically active (13)C substrates, allowing for rapid assessment of (13)C metabolism in vivo. The present study applied hyperpolarized (13)C magnetic resonance spectroscopy to the investigation of liver metabolism, demonstrating for the first time the feasibility of applying this technology to detect differences in liver metabolic states. PROCEDURES: [1-(13)C]pyruvate was hyperpolarized with a dynamic nuclear polarization instrument and injected into normal and fasted rats. The uptake of pyruvate and its conversion to the metabolic products lactate and alanine were observed with slice-localized dynamic magnetic resonance spectroscopy and 3D magnetic resonance spectroscopic imaging (3D-MRSI). RESULTS: Significant differences in lactate to alanine ratio (P < 0.01) between normal and fasted rat liver slice dynamic spectra were observed. 3D-MRSI localized to the fasted livers demonstrated significantly decreased (13)C-alanine levels (P < 0.01) compared to normal. CONCLUSIONS: This study presents the initial demonstration of characterizing metabolic state differences in the liver with hyperpolarized (13)C spectroscopy and shows the ability to detect physiological perturbations in alanine aminotransferase activity, which is an encouraging result for future liver disease investigations with hyperpolarized magnetic resonance technology
- …