6,894 research outputs found

    Self-forces from generalized Killing fields

    Full text link
    A non-perturbative formalism is developed that simplifies the understanding of self-forces and self-torques acting on extended scalar charges in curved spacetimes. Laws of motion are locally derived using momenta generated by a set of generalized Killing fields. Self-interactions that may be interpreted as arising from the details of a body's internal structure are shown to have very simple geometric and physical interpretations. Certain modifications to the usual definition for a center-of-mass are identified that significantly simplify the motions of charges with strong self-fields. A derivation is also provided for a generalized form of the Detweiler-Whiting axiom that pointlike charges should react only to the so-called regular component of their self-field. Standard results are shown to be recovered for sufficiently small charge distributions.Comment: 21 page

    Signatures of High-Intensity Compton Scattering

    Full text link
    We review known and discuss new signatures of high-intensity Compton scattering assuming a scenario where a high-power laser is brought into collision with an electron beam. At high intensities one expects to see a substantial red-shift of the usual kinematic Compton edge of the photon spectrum caused by the large, intensity dependent, effective mass of the electrons within the laser beam. Emission rates acquire their global maximum at this edge while neighbouring smaller peaks signal higher harmonics. In addition, we find that the notion of the centre-of-mass frame for a given harmonic becomes intensity dependent. Tuning the intensity then effectively amounts to changing the frame of reference, going continuously from inverse to ordinary Compton scattering with the centre-of-mass kinematics defining the transition point between the two.Comment: 25 pages, 16 .eps figure

    Plasma Properties in the Plume of a Hall Thruster Cluster

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76225/1/AIAA-3765-486.pd

    Cortical tau is associated with microstructural imaging biomarkers of neurite density and dendritic complexity in Alzheimer's disease

    Get PDF
    INTRODUCTION: In Alzheimer's disease (AD), hyperphosphorylated tau is closely associated with focal neurodegeneration, but the mechanism remains uncertain. METHODS: We quantified cortical microstructure using neurite orientation dispersion and density imaging in 14 individuals with young onset AD. Diffusion tensor imaging measured mean diffusivity (MD). Amyloid beta and tau positron emission tomography were acquired and associations with microstructural measures were assessed. RESULTS: When regional volume was adjusted for, in the medial temporal lobe there was a significant negative association between neurite density and tau (partial R2  = 0.56, p = 0.008) and between orientation dispersion and tau (partial R2  = 0.66, p = 0.002), but not between MD and tau. In a wider cortical composite, there was an association between orientation dispersion and tau (partial R2  = 0.43, p = 0.030), but not between other measures and tau. DISCUSSION: Our findings are consistent with tau causing first dendritic pruning (reducing dispersion/complexity) followed by neuronal loss. Advanced magnetic resonance imaging (MRI) microstructural measures have the potential to provide information relating to underlying tau deposition

    Effects of Cathode Configuration on Hall Thruster Cluster Plume Properties

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76620/1/AIAA-24636-518.pd

    Saturated Ferromagnetism and Magnetization Deficit in Optimally Annealed (Ga,Mn)As Epilayers

    Full text link
    We examine the Mn concentration dependence of the electronic and magnetic properties of optimally annealed Ga1-xMnxAs epilayers for 1.35% < x < 8.3%. The Curie temperature (Tc), conductivity, and exchange energy increase with Mn concentration up to x ~ 0.05, but are almost constant for larger x, with Tc ~ 110 K. The ferromagnetic moment per Mn ion decreases monotonically with increasing x, implying that an increasing fraction of the Mn spins do not participate in the ferromagnetism. By contrast, the derived domain wall thickness, an important parameter for device design, remains surprisingly constant.Comment: 8 pages, 4 figures, submitted for Rapid Communication in Phys Rev
    corecore