6,894 research outputs found
Self-forces from generalized Killing fields
A non-perturbative formalism is developed that simplifies the understanding
of self-forces and self-torques acting on extended scalar charges in curved
spacetimes. Laws of motion are locally derived using momenta generated by a set
of generalized Killing fields. Self-interactions that may be interpreted as
arising from the details of a body's internal structure are shown to have very
simple geometric and physical interpretations. Certain modifications to the
usual definition for a center-of-mass are identified that significantly
simplify the motions of charges with strong self-fields. A derivation is also
provided for a generalized form of the Detweiler-Whiting axiom that pointlike
charges should react only to the so-called regular component of their
self-field. Standard results are shown to be recovered for sufficiently small
charge distributions.Comment: 21 page
Signatures of High-Intensity Compton Scattering
We review known and discuss new signatures of high-intensity Compton
scattering assuming a scenario where a high-power laser is brought into
collision with an electron beam. At high intensities one expects to see a
substantial red-shift of the usual kinematic Compton edge of the photon
spectrum caused by the large, intensity dependent, effective mass of the
electrons within the laser beam. Emission rates acquire their global maximum at
this edge while neighbouring smaller peaks signal higher harmonics. In
addition, we find that the notion of the centre-of-mass frame for a given
harmonic becomes intensity dependent. Tuning the intensity then effectively
amounts to changing the frame of reference, going continuously from inverse to
ordinary Compton scattering with the centre-of-mass kinematics defining the
transition point between the two.Comment: 25 pages, 16 .eps figure
Plasma Properties in the Plume of a Hall Thruster Cluster
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76225/1/AIAA-3765-486.pd
Cortical tau is associated with microstructural imaging biomarkers of neurite density and dendritic complexity in Alzheimer's disease
INTRODUCTION: In Alzheimer's disease (AD), hyperphosphorylated tau is closely associated with focal neurodegeneration, but the mechanism remains uncertain. METHODS: We quantified cortical microstructure using neurite orientation dispersion and density imaging in 14 individuals with young onset AD. Diffusion tensor imaging measured mean diffusivity (MD). Amyloid beta and tau positron emission tomography were acquired and associations with microstructural measures were assessed. RESULTS: When regional volume was adjusted for, in the medial temporal lobe there was a significant negative association between neurite density and tau (partial R2 = 0.56, p = 0.008) and between orientation dispersion and tau (partial R2 = 0.66, p = 0.002), but not between MD and tau. In a wider cortical composite, there was an association between orientation dispersion and tau (partial R2 = 0.43, p = 0.030), but not between other measures and tau. DISCUSSION: Our findings are consistent with tau causing first dendritic pruning (reducing dispersion/complexity) followed by neuronal loss. Advanced magnetic resonance imaging (MRI) microstructural measures have the potential to provide information relating to underlying tau deposition
A new measurement of the neutron detection efficiency for the NaI Crystal Ball detector
We report on a measurement of the neutron detection efficiency in NaI
crystals in the Crystal Ball detector obtained from a study of single p0
photoproduction on deuterium using the tagged photon beam at the Mainz
Microtron. The results were obtained up to a neutron energy of 400 MeV. They
are compared to previous measurements made more than 15 years ago at the pion
beam at the BNL AGS
Effects of Cathode Configuration on Hall Thruster Cluster Plume Properties
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76620/1/AIAA-24636-518.pd
Saturated Ferromagnetism and Magnetization Deficit in Optimally Annealed (Ga,Mn)As Epilayers
We examine the Mn concentration dependence of the electronic and magnetic
properties of optimally annealed Ga1-xMnxAs epilayers for 1.35% < x < 8.3%. The
Curie temperature (Tc), conductivity, and exchange energy increase with Mn
concentration up to x ~ 0.05, but are almost constant for larger x, with Tc ~
110 K. The ferromagnetic moment per Mn ion decreases monotonically with
increasing x, implying that an increasing fraction of the Mn spins do not
participate in the ferromagnetism. By contrast, the derived domain wall
thickness, an important parameter for device design, remains surprisingly
constant.Comment: 8 pages, 4 figures, submitted for Rapid Communication in Phys Rev
- …