61 research outputs found
Novel interactions between phytoplankton and bacteria shape microbial seasonal dynamics in coastal ocean waters
Trophic interactions between marine phytoplankton and heterotrophic bacteria are at the base of the biogeochemical carbon cycling in the ocean. However, the specific interactions taking place between phytoplankton and bacterial taxa remain largely unexplored, particularly out of phytoplankton blooming events. Here, we applied network analysis to a 3.5-year time-series dataset to assess the specific associations between different phytoplankton and bacterial taxa along the seasonal scale, distinguishing between free-living and particle-attached bacteria. Using a newly developed network post-analysis technique we removed bacteria-phytoplankton correlations that were primarily driven by environmental parameters, to detect potential biotic interactions. Our results indicate that phytoplankton dynamics may be a strong driver of the inter-annual variability in bacterial community composition. We found the highest abundance of specific bacteria-phytoplankton associations in the particle-attached fraction, indicating a tighter bacteria-phytoplankton association than in the free-living fraction. In the particle-associated fraction we unveiled novel potential associations such as the one between Planctomycetes taxa and the diatom Leptocylindrus spp. Consistent correlations were also found between free-living bacterial taxa and different diatoms, including novel associations such as those between SAR11 with Naviculales diatom order, and between Actinobacteria and Cylindrotheca spp. We also confirmed previously known associations between Rhodobacteraceae and Thalassiosira spp. Our results expand our view on bacteria-phytoplankton associations, suggesting that taxa-specific interactions may largely impact the seasonal dynamics of heterotrophic bacterial communities
Major role of nutrient supply in the control of picophytoplankton community structure.
abstractThe Margalef´s mandala (1978) is a simplified bottom-up control model that explains how mixing and
nutrient concentration determine the composition of marine phytoplankton communities. Due to the
difficulties of measuring turbulence in the field, previous attempts to verify this model have applied
different proxies for nutrient supply, and very often used interchangeably the terms mixing and
stratification. Moreover, because the mandala was conceived before the discovery of smaller
phytoplankton groups (picoplankton <2 μm), it describes only the succession of vegetative phases of
microplankton. In order to test the applicability of the classical mandala to picoplankton groups, we
used a multidisciplinary approach including specifically designed field observations supported by
remote sensing, database analyses, and modeling and laboratory chemostat experiments.
Simultaneous estimates of nitrate diffusive fluxes, derived from microturbulence observations, and
picoplankton abundance collected in more than 200 stations, spanning widely different hydrographic
regimes, showed that the contribution of eukaryotes to picoautotrophic biomass increases with
nutrient supply, whereas that of picocyanobacteria shows the opposite trend. These findings were
supported by laboratory and modeling chemostat experiments that reproduced the competitive
dynamics between picoeukaryote sand picocyanobacteria as a function of changing nutrient supply.
Our results indicate that nutrient supply controls the distribution of picoplankton functional groups in
the ocean, further supporting the model proposed by Margalef.RADIALES (IEO
Control of tHe structure of marine phytoplAnkton cOmmunities by turbulence and nutrient supply dynamicS (CHAOS)
extended abstract del posterIn order to investigate the role of turbulence mixing on structuring marine phytoplankton communities, the CHAOS project included a multidisciplinary approach involving specifically designed field observations supported by remote sensing, database analyses, and modeling and laboratory chemostat experiments. Field observations carried out in the outer part of Ría de Vigo in summer 2013 showed that, as a result of increased mixing levels, nitrate diffusive input into the euphotic layer was approximately 4-fold higher during spring tides. This nitrate supply could contribute to explain the continuous dominance of large-sized phytoplankton during the upwelling favorable season. Simultaneous estimates of nitrate diffusive fluxes, derived from microturbulence observations, and picoplankton abundance collected in more than 100 stations, spanning widely different hydrographic regimes, showed that the contribution of eukaryotes to picoautotrophic biomass increases with nutrient supply, whereas that of picocyanobacteria shows the opposite trend. These findings were supported by laboratory and modeling chemostat experiments that reproduced the competitive dynamics between picoeukaryote and picocyanobacteria as a function of changing nutrient supply. The results derived from this project confirm that turbulence and mixing control the availability of light and nutrients, which in turn determine the structure of marine phytoplankton communities.RADIALES-20 (IEO), CHAOS (CTM 2012-30680), Malaspina-2010(CSD2008-00077
- …