31 research outputs found
Emergence of robust growth laws from optimal regulation of ribosome synthesis
Bacteria must constantly adapt their growth to changes in nutrient availability; yet despite large‐scale changes in protein expression associated with sensing, adaptation, and processing different environmental nutrients, simple growth laws connect the ribosome abundance and the growth rate. Here, we investigate the origin of these growth laws by analyzing the features of ribosomal regulation that coordinate proteome‐wide expression changes with cell growth in a variety of nutrient conditions in the model organism Escherichia coli. We identify supply‐driven feedforward activation of ribosomal protein synthesis as the key regulatory motif maximizing amino acid flux, and autonomously guiding a cell to achieve optimal growth in different environments. The growth laws emerge naturally from the robust regulatory strategy underlying growth rate control, irrespective of the details of the molecular implementation. The study highlights the interplay between phenomenological modeling and molecular mechanisms in uncovering fundamental operating constraints, with implications for endogenous and synthetic design of microorganisms.ISSN:1744-429
Muscle metabolism and activation heterogeneity by combined 31P chemical shift and T2 imaging, and pulmonary O2 uptake during incremental knee-extensor exercise.
The integration of skeletal muscle substrate depletion, metabolite accumulation, and fatigue during large muscle-mass exercise is not well understood. Measurement of intramuscular energy store degradation and metabolite accumulation is confounded by muscle heterogeneity. Therefore, to characterize regional metabolic distribution in the locomotor muscles, we combined 31P magnetic resonance spectroscopy, chemical shift imaging, and T2-weighted imaging with pulmonary oxygen uptake during bilateral knee-extension exercise to intolerance. Six men completed incremental tests for the following: (1) unlocalized 31P magnetic resonance spectroscopy; and (2) spatial determination of 31P metabolism and activation. The relationship of pulmonary oxygen uptake to whole quadriceps phosphocreatine concentration ([PCr]) was inversely linear, and three of four knee-extensor muscles showed activation as assessed by change in T2. The largest changes in [PCr], [inorganic phosphate] ([Pi]) and pH occurred in rectus femoris, but no voxel (72 cm3) showed complete PCr depletion at exercise cessation. The most metabolically active voxel reached 11 ± 9 mM [PCr] (resting, 29 ± 1 mM), 23 ± 11 mM [Pi] (resting, 7 ± 1 mM), and a pH of 6.64 ± 0.29 (resting, 7.08 ± 0.03). However, the distribution of 31P metabolites and pH varied widely between voxels, and the intervoxel coefficient of variation increased between rest (∼10%) and exercise intolerance (∼30-60%). Therefore, the limit of tolerance was attained with wide heterogeneity in substrate depletion and fatigue-related metabolite accumulation, with extreme metabolic perturbation isolated to only a small volume of active muscle (<5%). Regional intramuscular disturbances are thus likely an important requisite for exercise intolerance. How these signals integrate to limit muscle power production, while regional "recruitable muscle" energy stores are presumably still available, remains uncertain
Towards the Establishment of a Porcine Model to Study Human Amebiasis
BACKGROUND: Entamoeba histolytica is an important parasite of the human intestine. Its life cycle is monoxenous with two stages: (i) the trophozoite, growing in the intestine and (ii) the cyst corresponding to the dissemination stage. The trophozoite in the intestine can live as a commensal leading to asymptomatic infection or as a tissue invasive form producing mucosal ulcers and liver abscesses. There is no animal model mimicking the whole disease cycle. Most of the biological information on E. histolytica has been obtained from trophozoite adapted to axenic culture. The reproduction of intestinal amebiasis in an animal model is difficult while for liver amebiasis there are well-described rodent models. During this study, we worked on the assessment of pigs as a new potential model to study amebiasis. METHODOLOGY/PRINCIPAL FINDINGS: We first co-cultured trophozoites of E. histolytica with porcine colonic fragments and observed a disruption of the mucosal architecture. Then, we showed that outbred pigs can be used to reproduce some lesions associated with human amebiasis. A detailed analysis was performed using a washed closed-jejunal loops model. In loops inoculated with virulent amebas a severe acute ulcerative jejunitis was observed with large hemorrhagic lesions 14 days post-inoculation associated with the presence of the trophozoites in the depth of the mucosa in two out four animals. Furthermore, typical large sized hepatic abscesses were observed in the liver of one animal 7 days post-injection in the portal vein and the liver parenchyma. CONCLUSIONS: The pig model could help with simultaneously studying intestinal and extraintestinal lesion development
‘‘Beet-ing’’ the Mountain: A Review of the Physiological and Performance Effects of Dietary Nitrate Supplementation at Simulated and Terrestrial Altitude
Exposure to altitude results in multiple physiological consequences. These include, but are not limited to, a reduced maximal oxygen consumption, drop in arterial oxygen saturation, and increase in muscle metabolic perturbations at a fixed sub-maximal work rate. Exercise capacity during fixed work rate or incremental exercise and time-trial performance are also impaired at altitude relative to sea-level. Recently, dietary nitrate (NO3-) supplementation has attracted considerable interest as a nutritional aid during altitude exposure. In this review, we summarise and critically evaluate the physiological and performance effects of dietary NO3- supplementation during exposure to simulated and terrestrial altitude. Previous investigations at simulated altitude indicate that NO3- supplementation may reduce the oxygen cost of exercise, elevate arterial and tissue oxygen saturation, improve muscle metabolic function, and enhance exercise capacity/ performance. Conversely, current evidence suggests that NO3- supplementation does not augment the training response at simulated altitude. Few studies have evaluated the effects of NO3- at terrestrial altitude. Current evidence indicates potential improvements in endothelial function at terrestrial altitude following NO3- supplementation. No effects of NO3- supplementation have been observed on oxygen consumption or arterial oxygen saturation at terrestrial altitude, although further research is warranted. Limitations of the present body of literature are discussed, and directions for future research are provided
Genomic reconstruction of the SARS-CoV-2 epidemic in England.
The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021
Implementation of a Zebrafish Health Program in a Research Facility: A 4-Year Retrospective Study
In the past two decades, zebrafish (Danio rerio)-based research has contributed to significant scientific advances. Still, husbandry and health programs did not evolve at the same pace, as evidenced by the absence of general guidelines. Health monitoring is essential to animal welfare, to permit animal exchanges across facilities, to contribute to robust experimental results, and for data reproducibility. In this study, we report a health program implemented in a zebrafish research facility to prevent, monitor, and control pathogen, and disease dissemination. This program includes quarantine, routine health screening of sentinels, and nonroutine screenings of retired animals and sick/moribund individuals. An extensive list of clinical signs, lesions, and pathogens was monitored based on: daily observation of fish, necropsy, histology, and bacterial culture. The results indicate that the combined analysis of sentinels with the evaluation of sick/moribund animals enables a comprehensive description not only of pathogen prevalence but also of clinical and histopathologic lesions of resident animals. The establishment of a quarantine program revealed to be effective in the reduction of Pseudoloma neurophilia frequency in the main aquaria room. Finally, characterization of the colony health status based on this multiapproach program shows a low prevalence of lesions and pathogens in the facility.Instituto Gulbenkian de Ciência (IGC); Animal House Core Facility (AHCF);info:eu-repo/semantics/publishedVersio
CD4(+) T-cell responses and distribution at the colonic mucosa during Brachyspira hyodysenteriae-induced colitis in pigs
The spirochaete Brachyspira hyodysenteriae causes swine dysentery, a severe colitis characterized by mucosal enlargement as a result of crypt elongation and epithelial necrosis. Most efforts to understand the pathogenesis of this disease have focused on the aetiological agent and its virulence factors. However, the host immune response has been considered an important factor in disease development. Previous research has shown that B. hyodysenteriae induces systemic CD4(+) and γδ T-cell responses after intramuscular immunization. Here, we have evaluated changes in the CD4(+) and γδ T-cell composition and distribution the different compartments of the colonic mucosa of pigs challenged with B. hyodysenteriae. We report that, in infected pigs, γδ T cells were significantly depleted from the epithelial layer, although their numbers were maintained in the lamina propria. In addition, CD4(+) T cells aggregated in clusters located in the lamina propria and submucosa. Ex vivo analyses of CD4(+) T-cell responses to B. hyodysenteriae antigens correlated with the changes in the mucosal CD4(+) T-cell distribution observed in infected pigs; CD4(+) T cells recovered from peripheral blood and colonic lymph nodes of infected pigs proliferated to B. hyodysenteriae antigens, whereas no differences were found in the γδ T-cell responses between challenged and control groups. In addition, colonic lymph node CD4(+) T cells had a predominant memory/activated phenotype. These results indicate that infection with B. hyodysenteriae induces a mucosal CD4(+) T-cell response and points to CD4(+) T cells being important contributors to the immunopathogenesis of swine dysentery