9 research outputs found
An Atlas of the Thioredoxin Fold Class Reveals the Complexity of Function-Enabling Adaptations
The group of proteins that contain a thioredoxin (Trx) fold is huge and diverse. Assessment of the variation in catalytic machinery of Trx fold proteins is essential in providing a foundation for understanding their functional diversity and predicting the function of the many uncharacterized members of the class. The proteins of the Trx fold class retain common features—including variations on a dithiol CxxC active site motif—that lead to delivery of function. We use protein similarity networks to guide an analysis of how structural and sequence motifs track with catalytic function and taxonomic categories for 4,082 representative sequences spanning the known superfamilies of the Trx fold. Domain structure in the fold class is varied and modular, with 2.8% of sequences containing more than one Trx fold domain. Most member proteins are bacterial. The fold class exhibits many modifications to the CxxC active site motif—only 56.8% of proteins have both cysteines, and no functional groupings have absolute conservation of the expected catalytic motif. Only a small fraction of Trx fold sequences have been functionally characterized. This work provides a global view of the complex distribution of domains and catalytic machinery throughout the fold class, showing that each superfamily contains remnants of the CxxC active site. The unifying context provided by this work can guide the comparison of members of different Trx fold superfamilies to gain insight about their structure-function relationships, illustrated here with the thioredoxins and peroxiredoxins
The effect of synergy enhancement on information technology portfolio selection
This paper investigates how firms can use synergy to optimize their information technology portfolios. We begin by developing a framework for the portfolio selection by identifying three types of information technology synergy. Next, we use this framework to examine the impact of different types of synergy on the portfolio selection. Analytical models are developed to illustrate the roles of different types of the synergy, and analytical and computational methods are used to investigate the impact of the synergy. The analysis in this paper provides conditions in which synergy enhancement results in a more efficient or a less efficient portfolio. Our study establishes that firms with higher risk thresholds are more likely to obtain more efficient information technology portfolios by enhancing synergy, whereas firms with lower risk thresholds are less likely to benefit from enhancing synergy.open
MTH1745, a protein disulfide isomerase-like protein from thermophilic archaea, Methanothermobacter thermoautotrophicum involving in stress response
MTH1745 is a putative protein disulfide isomerase characterized with 151 amino acid residues and a CPAC active-site from the anaerobic archaea Methanothermobacter thermoautotrophicum. The potential functions of MTH1745 are not clear. In the present study, we show a crucial role of MTH1745 in protecting cells against stress which may be related to its functions as a disulfide isomerase and its chaperone properties. Using real-time polymerase chain reaction analyses, the level of MTH1745 messenger RNA (mRNA) in the thermophilic archaea M. thermoautotrophicum was found to be stress-induced in that it was significantly higher under low (50°C) and high (70°C) growth temperatures than under the optimal growth temperature for the organism (65°C). Additionally, the expression of MTH1745 mRNA was up-regulated by cold shock (4°C). Furthermore, the survival of MTH1745 expressing Escherichia coli cells was markedly higher than that of control cells in response to heat shock (51.0°C). These results indicated that MTH1745 plays an important role in the resistance of stress. By assay of enzyme activities in vitro, MTH1745 also exhibited a chaperone function by promoting the functional folding of citrate synthase after thermodenaturation. On the other hand, MTH1745 was also shown to function as a disulfide isomerase on the refolding of denatured and reduced ribonuclease A. On the basis of its single thioredoxin domain, function as a disulfide isomerase, and its chaperone activity, we suggest that MTH1745 may be an ancient protein disulfide isomerase. These studies may provide clues to the understanding of the function of protein disulfide isomerase in archaea