3,029 research outputs found

    Climate change in Central and South America: Recent trends, future projections, and impacts on regional agriculture

    Get PDF
    This report investigates the climate of two target regions of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Central and South America (CA and SA, respectively). The report assesses the implications of climate change for agriculture, with a particular focus on those aspects of climate change that will have greatest impact on the crops currently grown in each region. The study investigated the ability of General Circulation Models (GCMs) and downscaled climate change scenarios to reproduce already observed climates, to establish the reliability of future climate projections, as well as projections of how associated crops might grow under future conditions

    Distribution of sulfur in power supply lignite from North Hungary

    Get PDF
    Abstract The present article discusses the results of measurements carried out to assess the distribution of different sulfur types in lignite samples deriving from two opencast lignite mines near the villages of Bükkábrány and Visonta. These mines ensure the continuous supply of fuel for one of Hungary's largest thermal power plant. According to our findings no significant differences could be identified between the samples of the two mines based on their total sulfur (St) content. Both lignite types were classified as coals with medium-sulfur content according to the system of Chou (1990). A majority of total sulfur is accumulated in lignite, while in the intercalated carbonaceous shale total sulfur is present in minor amounts. Usually the sequence of the distribution of sulfur among the different bond forms in lignite collected from opencast mine of Visonta is as follows: pyritic sulfur (Sp) > organic sulfur (Sorg) > sulfate sulfur (SSOorg4). In the samples collected from Visonta and Bükkábrány quantities of total sulfur were similar. However, some difference in their distribution among various sulfur types were noted. Although half of the samples were weathered and the amount of pyrite sulfur must have been higher in the weathered lignite of Bükkábrány preceding the oxidation process, the sequence of the distribution of sulfur was likely as follows Sorg ≥ Sp ≥ SSO4

    Search for Second-Generation Scalar Leptoquarks in ppˉ\bm{p \bar{p}} Collisions at s\sqrt{s}=1.96 TeV

    Get PDF
    Results on a search for pair production of second generation scalar leptoquark in ppˉp \bar{p} collisions at s\sqrt{s}=1.96 TeV are reported. The data analyzed were collected by the CDF detector during the 2002-2003 Tevatron Run II and correspond to an integrated luminosity of 198 pb1^{-1}. Leptoquarks (LQ) are sought through their decay into (charged) leptons and quarks, with final state signatures represented by two muons and jets and one muon, large transverse missing energy and jets. We observe no evidence for LQLQ production and derive 95% C.L. upper limits on the LQLQ production cross sections as well as lower limits on their mass as a function of β\beta, where β\beta is the branching fraction for LQμqLQ \to \mu q.Comment: 9 pages (3 author list) 5 figure

    Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins

    Get PDF
    Electronic skins (e-skins) with high sensitivity to multidirectional mechanical stimuli are crucial for healthcare monitoring devices, robotics, and wearable sensors. In this study, we present piezoresistive e-skins with tunable force sensitivity and selectivity to multidirectional forces through the engineered microstructure geometries (i.e., dome, pyramid, and pillar). Depending on the microstructure geometry, distinct variations in contact area and localized stress distribution are observed under different mechanical forces (i.e., normal, shear, stretching, and bending), which critically affect the force sensitivity, selectivity, response/relaxation time, and mechanical stability of e-skins. Microdome structures present the best force sensitivities for normal, tensile, and bending stresses. In particular, microdome structures exhibit extremely high pressure sensitivities over broad pressure ranges (47,062 kPa(-1) in the range of < 1 kPa, 90,657 kPa(-1) in the range of 1-10 kPa, and 30,214 kPa(-1) in the range of 10-26 kPa). On the other hand, for shear stress, micropillar structures exhibit the highest sensitivity. As proof-of-concept applications in healthcare monitoring devices, we show that our e-skins can precisely monitor acoustic waves, breathing, and human artery/carotid pulse pressures. Unveiling the relationship between the microstructure geometry of e-skins and their sensing capability would provide a platform for future development of high-performance microstructured e-skins

    AWPP: A New Scheme for Wireless Access Control Proportional to Traffic Priority and Rate

    Get PDF
    Cutting-edge wireless networking approaches are required to efficiently differentiate traffic and handle it according to its special characteristics. The current Medium Access Control (MAC) scheme which is expected to be sufficiently supported by well-known networking vendors comes from the IEEE 802.11e workgroup. The standardized solution is the Hybrid Coordination Function (HCF), that includes the mandatory Enhanced Distributed Channel Access (EDCA) protocol and the optional Hybrid Control Channel Access (HCCA) protocol. These two protocols greatly differ in nature and they both have significant limitations. The objective of this work is the development of a high-performance MAC scheme for wireless networks, capable of providing predictable Quality of Service (QoS) via an efficient traffic differentiation algorithm in proportion to the traffic priority and generation rate. The proposed Adaptive Weighted and Prioritized Polling (AWPP) protocol is analyzed, and its superior deterministic operation is revealed

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Encoding of physics concepts: Concreteness and presentation modality reflected by human brain dynamics

    Get PDF
    Previous research into working memory has focused on activations in different brain areas accompanying either different presentation modalities (verbal vs. non-verbal) or concreteness (abstract vs. concrete) of non-science concepts. Less research has been conducted investigating how scientific concepts are learned and further processed in working memory. To bridge this gap, the present study investigated human brain dynamics associated with encoding of physics concepts, taking both presentation modality and concreteness into account. Results of this study revealed greater theta and low-beta synchronization in the anterior cingulate cortex (ACC) during encoding of concrete pictures as compared to the encoding of both high and low imageable words. In visual brain areas, greater theta activity accompanying stimulus onsets was observed for words as compared to pictures while stronger alpha suppression was observed in responses to pictures as compared to words. In general, the EEG oscillation patterns for encoding words of different levels of abstractness were comparable but differed significantly from encoding of pictures. These results provide insights into the effects of modality of presentation on human encoding of scientific concepts and thus might help in developing new ways to better teach scientific concepts in class. © 2012 Lai et al

    Measurement of the Dipion Mass Spectrum in X(3872) -> J/Psi Pi+ Pi- Decays

    Get PDF
    We measure the dipion mass spectrum in X(3872)--> J/Psi Pi+ Pi- decays using 360 pb-1 of pbar-p collisions at 1.96 TeV collected with the CDF II detector. The spectrum is fit with predictions for odd C-parity (3S1, 1P1, and 3DJ) charmonia decaying to J/Psi Pi+ Pi-, as well as even C-parity states in which the pions are from Rho0 decay. The latter case also encompasses exotic interpretations, such as a D0-D*0Bar molecule. Only the 3S1 and J/Psi Rho hypotheses are compatible with our data. Since 3S1 is untenable on other grounds, decay via J/Psi Rho is favored, which implies C=+1 for the X(3872). Models for different J/Psi-Rho angular momenta L are considered. Flexibility in the models, especially the introduction of Rho-Omega interference, enable good descriptions of our data for both L=0 and 1.Comment: 7 pages, 4 figures -- Submitted to Phys. Rev. Let
    corecore