6 research outputs found

    A liver fibrosis cocktail? Psoriasis, methotrexate and genetic hemochromatosis

    Get PDF
    BACKGROUND: Pathologists are often faced with the dilemma of whether to recommend continuation of methotrexate therapy for psoriasis within the context of an existing pro-fibrogenic risk factor, in this instance, patients with genetic hemochromatosis. CASE PRESENTATIONS: We describe our experience with two male psoriatic patients (A and B) on long term methotrexate therapy (cumulative dose A = 1.56 gms and B = 7.88 gms) with hetero- (A) and homozygous (B) genetic hemochromatosis. These patients liver function were monitored with routine biochemical profiling; apart from mild perivenular fibrosis in one patient (B), significant liver fibrosis was not identified in either patient with multiple interval percutaneous liver biopsies; in the latter instance this patient (B) had an additional risk factor of partiality to alcohol. CONCLUSION: We conclude that methotrexate therapy is relatively safe in patients with genetic hemochromatosis, with no other risk factor, but caution that the risk of fibrosis be monitored, preferably by non-invasive techniques, or by liver biopsy

    Cirrhosis

    No full text

    CNS Drug Delivery: Opioid Peptides and the Blood-Brain Barrier

    No full text

    Long-term Safety of Oral Systemic Therapies for Psoriasis: A Comprehensive Review of the Literature

    No full text

    CNS drug delivery: Opioid peptides and the blood-brain barrier

    No full text
    Peptides are key regulators in cellular and intercellular physiological responses and possess enormous promise for the treatment of pathological conditions. Opioid peptide activity within the central nervous system (CNS) is of particular interest for the treatment of pain owing to the elevated potency of peptides and the centrally mediated actions of pain processes. Despite this potential, peptides have seen limited use as clinically viable drugs for the treatment of pain. Reasons for the limited use are primarily based in the physiochemical and biochemical nature of peptides. Numerous approaches have been devised in an attempt to improve peptide drug delivery to the brain, with variable results. This review describes different approaches to peptide design/modification and provides examples of the value of these strategies to CNS delivery of peptide drugs. The various modes of modification of therapeutic peptides may be amalgamated, creating more efficacious “hybrid” peptides, with synergistic delivery to the CNS. The ongoing development of these strategies provides promise that peptide drugs may be useful for the treatment of pain and other neurologically-based disease states in the futur
    corecore