1,068 research outputs found
Expression of the DNA mismatch repair proteins hMLH1 and hPMS2 in normal human tissues.
hMLH1 and hPMS2 are part of the DNA mismatch repair complex. Mutations in these genes have been linked to hereditary non-polyposis colon cancer; they also occur in a variety of sporadic cancers. Western blot analysis and immunohistochemistry demonstrated that hMLH1 and hPMS2 are widely expressed nuclear proteins with a distribution pattern very similar to that previously described for hMSH2. These observations showing similar localization of hMLH1 and hPMS2 with hMSH2 are consistent with the biochemical function of these proteins in DNA mismatch repair
Phase-resolved Hubble Space Telescope ultraviolet spectroscopy
We present highly time-resolved HST FOS UV spectroscopy of the nova-like binary V795 Her. Several key results emerge. For the first time we find a strong 2.6-h signature in the variability of the UV lines. The HST data reveal no evidence of a 4.8-h ‘period’, in contrast to our previous IUE observations. This, and differences in the spectral line characteristics, suggests that HST found the system in a different state from earlier IUE observations. The C IV line alone contains a fairly stable, asymmetric, extended blueward absorption trough which we associate with a wind outflow. The 2.6-h variations of the line profiles are largely confined to an interval of about 0.4 in phase and to the velocity regime −1500 < v < 0 km s−1, the changes being dominated by the apparent decline and re-emergence of a blueshifted emission peak. The complex profiles permit many empirical interpretations, but the simplest attributes the variability to a narrow (FWHM∼1000 km s−1) emission component which is always blueshifted with a mean velocity of around –600 km s−1. This interpretation, however, is not readily related to any obvious source within the binary. An alternative picture, which attempts to relate the UV and (simultaneously observed) optical line behaviour, invokes a more stable, broad (FWHM∼2000 km s−1) emission feature, the intrinsic morphology of which is disguised by superposed constant and variable absorption components. One tentative physical explanation of such a decomposition involves an accretion stream that overflows the accretion disc. However, several problems with this model remain to be resolved. We also draw attention to similarities between the velocity-restricted behaviour in the UV lines of V795 Her and that in the optical lines of T Tauri stars. This might indicate a connection between V795 Her and the magnetically influenced inflow/outflow characteristics associated with the central star in T Tauri systems. If such a connection were eventually demonstrated, it would reopen the question of whether the 2.6-h period in V795 Her is really the binary period and whether the system is in fact related to the intermediate polars
A constitutive law for dense granular flows
A continuum description of granular flows would be of considerable help in
predicting natural geophysical hazards or in designing industrial processes.
However, the constitutive equations for dry granular flows, which govern how
the material moves under shear, are still a matter of debate. One difficulty is
that grains can behave like a solid (in a sand pile), a liquid (when poured
from a silo) or a gas (when strongly agitated). For the two extreme regimes,
constitutive equations have been proposed based on kinetic theory for
collisional rapid flows, and soil mechanics for slow plastic flows. However,
the intermediate dense regime, where the granular material flows like a liquid,
still lacks a unified view and has motivated many studies over the past decade.
The main characteristics of granular liquids are: a yield criterion (a critical
shear stress below which flow is not possible) and a complex dependence on
shear rate when flowing. In this sense, granular matter shares similarities
with classical visco-plastic fluids such as Bingham fluids. Here we propose a
new constitutive relation for dense granular flows, inspired by this analogy
and recent numerical and experimental work. We then test our three-dimensional
(3D) model through experiments on granular flows on a pile between rough
sidewalls, in which a complex 3D flow pattern develops. We show that, without
any fitting parameter, the model gives quantitative predictions for the flow
shape and velocity profiles. Our results support the idea that a simple
visco-plastic approach can quantitatively capture granular flow properties, and
could serve as a basic tool for modelling more complex flows in geophysical or
industrial applications.Comment: http://www.nature.com/nature/journal/v441/n7094/abs/nature04801.htm
Transit Photometry as an Exoplanet Discovery Method
Photometry with the transit method has arguably been the most successful
exoplanet discovery method to date. A short overview about the rise of that
method to its present status is given. The method's strength is the rich set of
parameters that can be obtained from transiting planets, in particular in
combination with radial velocity observations; the basic principles of these
parameters are given. The method has however also drawbacks, which are the low
probability that transits appear in randomly oriented planet systems, and the
presence of astrophysical phenomena that may mimic transits and give rise to
false detection positives. In the second part we outline the main factors that
determine the design of transit surveys, such as the size of the survey sample,
the temporal coverage, the detection precision, the sample brightness and the
methods to extract transit events from observed light curves. Lastly, an
overview over past, current and future transit surveys is given. For these
surveys we indicate their basic instrument configuration and their planet
catch, including the ranges of planet sizes and stellar magnitudes that were
encountered. Current and future transit detection experiments concentrate
primarily on bright or special targets, and we expect that the transit method
remains a principal driver of exoplanet science, through new discoveries to be
made and through the development of new generations of instruments.Comment: Review chapte
A Neptune-sized transiting planet closely orbiting a 5–10-million-year-old star
Theories of the formation and early evolution of planetary systems postulate that planets are born in circumstellar disks, and undergo radial migration during and after dissipation of the dust and gas disk from which they formed^1, 2. The precise ages of meteorites indicate that planetesimals—the building blocks of planets—are produced within the first million years of a star’s life^3. Fully formed planets are frequently detected on short orbital periods around mature stars. Some theories suggest that the in situ formation of planets close to their host stars is unlikely and that the existence of such planets is therefore evidence of large-scale migration^4, 5. Other theories posit that planet assembly at small orbital separations may be common^6, 7, 8. Here we report a newly born, transiting planet orbiting its star with a period of 5.4 days. The planet is 50 per cent larger than Neptune, and its mass is less than 3.6 times that of Jupiter (at 99.7 per cent confidence), with a true mass likely to be similar to that of Neptune. The star is 5–10 million years old and has a tenuous dust disk extending outward from about twice the Earth–Sun separation, in addition to the fully formed planet located at less than one-twentieth of the Earth–Sun separation
A seven-planet resonant chain in TRAPPIST-1
The TRAPPIST-1 system is the first transiting planet system found orbiting an ultra-cool dwarf star1. At least seven planets similar to Earth in radius were previously found to transit this host star2. Subsequently, TRAPPIST-1 was observed as part of the K2 mission and, with these new data, we report the measurement of an 18.77 d orbital period for the outermost transiting planet, TRAPPIST-1h, which was unconstrained until now. This value matches our theoretical expectations based on Laplace relations3 and places TRAPPIST-1h as the seventh member of a complex chain, with three-body resonances linking every member. We find that TRAPPIST-1h has a radius of 0.727 R⊕ and an equilibrium temperature of 169 K. We have also measured the rotational period of the star at 3.3 d and detected a number of flares consistent with a low-activity, middle-aged, late M dwarf
The association between histamine 2 receptor antagonist use and Clostridium difficile infection: a systematic review and meta-analysis.
Background
Clostridium difficile infection (CDI) is a major health problem. Epidemiological evidence suggests that there is an association between acid suppression therapy and development of CDI.
Purpose
We sought to systematically review the literature that examined the association between histamine 2 receptor antagonists (H2RAs) and CDI.
Data source
We searched Medline, Current Contents, Embase, ISI Web of Science and Elsevier Scopus from 1990 to 2012 for all analytical studies that examined the association between H2RAs and CDI.
Study selection
Two authors independently reviewed the studies for eligibility.
Data extraction
Data about studies characteristics, adjusted effect estimates and quality were extracted.
Data synthesis
Thirty-five observations from 33 eligible studies that included 201834 participants were analyzed. Studies were performed in 6 countries and nine of them were multicenter. Most studies did not specify the type or duration of H2RAs therapy. The pooled effect estimate was 1.44, 95% CI (1.22–1.7), I2 = 70.5%. This association was consistent across different subgroups (by study design and country) and there was no evidence of publication bias. The pooled effect estimate for high quality studies was 1.39 (1.15–1.68), I2 = 72.3%. Meta-regression analysis of 10 study-level variables did not identify sources of heterogeneity. In a speculative analysis, the number needed to harm (NNH) with H2RAs at 14 days after hospital admission in patients receiving antibiotics or not was 58, 95% CI (37, 115) and 425, 95% CI (267, 848), respectively. For the general population, the NNH at 1 year was 4549, 95% CI (2860, 9097).
Conclusion
In this rigorous systematic review and meta-analysis, we observed an association between H2RAs and CDI. The absolute risk of CDI associated with H2RAs is highest in hospitalized patients receiving antibiotics
Confined dense circumstellar material surrounding a regular type II supernova
With the advent of new wide-field, high-cadence optical transient surveys, our understanding of the diversity of core-collapse supernovae has grown tremendously in the last decade. However, the pre-supernova evolution of massive stars, which sets the physical backdrop to these violent events, is theoretically not well understood and difficult to probe observationally. Here we report the discovery of the supernova iPTF 13dqy = SN 2013fs a mere ∼3 h after explosion. Our rapid follow-up observations, which include multiwavelength photometry and extremely early (beginning at ∼6 h post-explosion) spectra, map the distribution of material in the immediate environment (≲1015 cm) of the exploding star and establish that it was surrounded by circumstellar material (CSM) that was ejected during the final ∼1 yr prior to explosion at a high rate, around 10-3 solar masses per year. The complete disappearance of flash-ionized emission lines within the first several days requires that the dense CSM be confined to within ≲1015 cm, consistent with radio non-detections at 70–100 days. The observations indicate that iPTF 13dqy was a regular type II supernova; thus, the finding that the probable red supergiant progenitor of this common explosion ejected material at a highly elevated rate just prior to its demise suggests that pre-supernova instabilities may be common among exploding massive stars. © 2017 Nature Publishing Grou
Evo-devo of human adolescence: beyond disease models of early puberty
Despite substantial heritability in pubertal development, much variation remains to be explained, leaving room for the influence of environmental factors to adjust its phenotypic trajectory in the service of fitness goals. Utilizing evolutionary development biology (evo-devo), we examine adolescence as an evolutionary life-history stage in its developmental context. We show that the transition from the preceding stage of juvenility entails adaptive plasticity in response to energy resources, other environmental cues, social needs of adolescence and maturation toward youth and adulthood. Using the evolutionary theory of socialization, we show that familial psychosocial stress fosters a fast life history and reproductive strategy rather than early maturation being just a risk factor for aggression and delinquency. Here we explore implications of an evolutionary-developmental-endocrinological-anthropological framework for theory building, while illuminating new directions for research
- …
