293 research outputs found
Recommended from our members
Direct observation of the gene organization of the complement C4 and 21-hydroxylase loci by pulsed field gel electrophoresis.
Pulsed field gel electrophoresis and enzymes that cut genomic DNA infrequently have been used to define large RFLPs at the human C4 loci. With the enzymes BssH II or Sac II, and C4 or 21-hydroxylase DNA probes, it has been possible to observe directly the number of C4 genes present on a haplotype, and also whether the C4 genes are long (6-7-kb intron present) or short (6-7-kb intron absent). Haplotypes that have either two long C4 genes or one long and one short C4 gene generate BssH II fragments of approximately 115 or approximately 105 kb, respectively. Haplotypes that have either a single long or a single short C4 gene generate BssH II fragments of approximately 80 or approximately 70 kb, respectively. This technique has been used to analyze the DNA isolated from PBMC and allows the complete definition of the C4 gene organization of an individual without the need for family studies
Gravitational Collapse and Fragmentation in Molecular Clouds with Adaptive Mesh Refinement
We describe a powerful methodology for numerical solution of 3-D
self-gravitational hydrodynamics problems with extremely high resolution. Our
method utilizes the technique of local adaptive mesh refinement (AMR),
employing multiple grids at multiple levels of resolution. These grids are
automatically and dynamically added and removed as necessary to maintain
adequate resolution. This technology allows for the solution of problems in a
manner that is both more efficient and more versatile than other fixed and
variable resolution methods. The application of AMR to simulate the collapse
and fragmentation of a molecular cloud, a key step in star formation, is
discussed. Such simulations involve many orders of magnitude of variation in
length scale as fragments form. In this paper we briefly describe the
methodology and present an illustrative application for nonisothermal cloud
collapse. We describe the numerical Jeans condition, a criterion for stability
of self-gravitational hydrodynamics problems. We show the first well-resolved
nonisothermal evolutionary sequence beginning with a perturbed dense molecular
cloud core that leads to the formation of a binary system consisting of
protostellar cores surrounded by distinct protostellar disks. The scale of the
disks, of order 100 AU, is consistent with observations of gaseous disks
surrounding single T-Tauri stars and debris disks surrounding systems such as
Pictoris.Comment: 10 pages, 6 figures (color postscript). To appear in the proceedings
of Numerical Astrophysics 1998, Tokyo, March 10-13, 199
Ecological implications of a flower size/number trade-off in tropical forest trees
Peer reviewedPublisher PD
Using a logical model to predict the growth of yeast
<p>Abstract</p> <p>Background</p> <p>A logical model of the known metabolic processes in <it>S. cerevisiae </it>was constructed from iFF708, an existing Flux Balance Analysis (FBA) model, and augmented with information from the KEGG online pathway database. The use of predicate logic as the knowledge representation for modelling enables an explicit representation of the structure of the metabolic network, and enables logical inference techniques to be used for model identification/improvement.</p> <p>Results</p> <p>Compared to the FBA model, the logical model has information on an additional 263 putative genes and 247 additional reactions. The correctness of this model was evaluated by comparison with iND750 (an updated FBA model closely related to iFF708) by evaluating the performance of both models on predicting empirical minimal medium growth data/essential gene listings.</p> <p>Conclusion</p> <p>ROC analysis and other statistical studies revealed that use of the simpler logical form and larger coverage results in no significant degradation of performance compared to iND750.</p
Nosocomial or not? A combined epidemiological and genomic investigation to understand hospital-acquired COVID-19 infection on an elderly care ward.
BACKGROUND: COVID-19 has the potential to cause outbreaks in hospitals. Given the comorbid and elderly cohort of patients hospitalized, hospital-acquired COVID-19 infection is often fatal. Pathogen genome sequencing is becoming increasingly important in infection prevention and control (IPC). AIM: To inform the understanding of in-hospital SARS-CoV-2 transmission in order to improve IPC practices and to inform the future development of virological testing for IPC. METHODS: Patients detected COVID-19 positive by polymerase chain reaction on Ward A in April and May 2020 were included with contact tracing to identify other potential cases. Genome sequencing was undertaken for a subgroup of cases. Epidemiological, genomic, and cluster analyses were performed to describe the epidemiology and to identify factors contributing to the outbreak. FINDINGS: Fourteen cases were identified on Ward A. Contact tracing identified 16 further patient cases; in addition, eight healthcare workers (HCWs) were identified as being COVID-19 positive through a round of asymptomatic testing. Genome sequencing of 16 of these cases identified viral genomes differing by two single nucleotide polymorphisms or fewer, with further cluster analysis identifying two groups of infection (a five-person group and a six-person group). CONCLUSION: Despite the temporal relationship of cases, genome sequencing identified that not all cases shared transmission events. However, 11 samples were found to be closely related and these likely represented in-hospital transmission. This included three HCWs, thereby confirming transmission between patients and HCWs.S.R. and A.B. are part-funded from Research England’s Expanding Excellence in England (E3) Fund. The sequencing costs were funded by the COVID-19 Genomics UK (COG-UK) Consortium which is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute for Health Research (NIHR) and Genome Research Limited, operating as the Wellcome Sanger Institute. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Prognostic markers in cancer: the evolution of evidence from single studies to meta-analysis, and beyond
In oncology, prognostic markers are clinical measures used to help elicit an individual patient's risk of a future outcome, such as recurrence of disease after primary treatment. They thus facilitate individual treatment choice and aid in patient counselling. Evidence-based results regarding prognostic markers are therefore very important to both clinicians and their patients. However, there is increasing awareness that prognostic marker studies have been neglected in the drive to improve medical research. Large protocol-driven, prospective studies are the ideal, with appropriate statistical analysis and clear, unbiased reporting of the methods used and the results obtained. Unfortunately, published prognostic studies rarely meet such standards, and systematic reviews and meta-analyses are often only able to draw attention to the paucity of good-quality evidence. We discuss how better-quality prognostic marker evidence can evolve over time from initial exploratory studies, to large protocol-driven primary studies, and then to meta-analysis or even beyond, to large prospectively planned pooled analyses and to the initiation of tumour banks. We highlight articles that facilitate each stage of this process, and that promote current guidelines aimed at improving the design, analysis, and reporting of prognostic marker research. We also outline why collaborative, multi-centre, and multi-disciplinary teams should be an essential part of future studies
Assessing Syndromic Surveillance of Cardiovascular Outcomes from Emergency Department Chief Complaint Data in New York City
Prospective syndromic surveillance of emergency department visits has been used for near-real time tracking of communicable diseases to detect outbreaks or other unexpected disease clusters. The utility of syndromic surveillance for tracking cardiovascular events, which may be influenced by environmental factors and influenza, has not been evaluated. We developed and evaluated a method for tracking cardiovascular events using emergency department free-text chief complaints.There were three phases to our analysis. First we applied text processing algorithms based on sensitivity, specificity, and positive predictive value to chief complaint data reported by 11 New York City emergency departments for which ICD-9 discharge diagnosis codes were available. Second, the same algorithms were applied to data reported by a larger sample of 50 New York City emergency departments for which discharge diagnosis was unavailable. From this more complete data, we evaluated the consistency of temporal variation of cardiovascular syndromic events and hospitalizations from 76 New York City hospitals. Finally, we examined associations between particulate matter ≤2.5 µm (PM(2.5)), syndromic events, and hospitalizations. Sensitivity and positive predictive value were low for syndromic events, while specificity was high. Utilizing the larger sample of emergency departments, a strong day of week pattern and weak seasonal trend were observed for syndromic events and hospitalizations. These time-series were highly correlated after removing the day-of-week, holiday, and seasonal trends. The estimated percent excess risks in the cold season (October to March) were 1.9% (95% confidence interval (CI): 0.6, 3.2), 2.1% (95% CI: 0.9, 3.3), and 1.8% (95%CI: 0.5, 3.0) per same-day 10 µg/m(3) increase in PM(2.5) for cardiac-only syndromic data, cardiovascular syndromic data, and hospitalizations, respectively.Near real-time emergency department chief complaint data may be useful for timely surveillance of cardiovascular morbidity related to ambient air pollution and other environmental events
Linking Self-Incompatibility, Dichogamy, and Flowering Synchrony in Two Euphorbia Species: Alternative Mechanisms for Avoiding Self-Fertilization?
Background: Plant species have several mechanisms to avoid selfing such as dichogamy or a self-incompatibility response.
Dichogamy in a single flower may reduce autogamy but, to avoid geitonogamy, plants must show flowering
synchronization among all their flowers (i.e. synchronous dichogamy). It is hypothesized that one species would not
simultaneously show synchronous dichogamy and self-incompatibility because they are redundant mechanisms to reduce
selfing; however, this has not been accurately assessed.
Methodology/Principal Findings: This expectation was tested over two years in two natural populations of the closely
related Mediterranean spurges Euphorbia boetica and E. nicaeensis, which completely avoid autogamy by protogyny at the
cyathia level. Both spurges showed a high population synchrony (Z,79), and their inflorescences flower synchronously. In E.
nicaeensis, there was no overlap among the cyathia in anthesis of successive inflorescence levels and the overlap between
sexual phases of cyathia of the same inflorescence level was uncommon (4–16%). In contrast, E. boetica showed a high
overlap among consecutive inflorescence levels (74–93%) and between sexual phases of cyathia of the same inflorescence
level (48–80%). The flowering pattern of both spurges was consistent in the two populations and over the two successive
years. A hand-pollination experiment demonstrated that E. nicaeensis was strictly self-compatible whereas E. boetica was
partially self-incompatible.
Conclusions/Significance: We propose that the complex pattern of synchronized protogyny in E. nicaeensis prevents
geitonogamous crosses and, consequently, avoids selfing and inbreeding depression. In E. boetica, a high probability of
geitonogamous crosses may occur but, alternatively, this plant escapes selfing through a self-incompatibility response. We
posit that synchronous dichogamy and physiological self-incompatibility do not co-occur in the same species because each
process is sufficiently effective in avoiding self-fertilization.España Ministerio de Ciencia y Tecnología PLO CGL2005-03731; CGL2008-02533-EEspaña Ministerio de Ciencia y Tecnología MA CGL2009-0825
Biosynthesis of Salmonella enterica [NiFe]-hydrogenase-5 : probing the roles of system-specific accessory proteins
A subset of bacterial [NiFe]-hydrogenases have been shown to be capable of activating dihydrogen-catalysis under aerobic conditions; however, it remains relatively unclear how the assembly and activation of these enzymes is carried out in the presence of air. Acquiring this knowledge is important if a generic method for achieving production of O2-resistant [NiFe]-hydrogenases within heterologous hosts is to be developed. Salmonella enterica serovar Typhimurium synthesizes the [NiFe]-hydrogenase-5 (Hyd-5) enzyme under aerobic conditions. As well as structural genes, the Hyd-5 operon also contains several accessory genes that are predicted to be involved in different stages of biosynthesis of the enzyme. In this work, deletions in the hydF, hydG, and hydH genes have been constructed. The hydF gene encodes a protein related to Ralstonia eutropha HoxO, which is known to interact with the small subunit of a [NiFe]-hydrogenase. HydG is predicted to be a fusion of the R. eutropha HoxQ and HoxR proteins, both of which have been implicated in the biosynthesis of an O2-tolerant hydrogenase, and HydH is a homologue of R. eutropha HoxV, which is a scaffold for [NiFe] cofactor assembly. It is shown here that HydG and HydH play essential roles in Hyd-5 biosynthesis. Hyd-5 can be isolated and characterized from a ΔhydF strain, indicating that HydF may not play the same vital role as the orthologous HoxO. This study, therefore, emphasises differences that can be observed when comparing the function of hydrogenase maturases in different biological systems
- …