23,196 research outputs found
Luttinger liquid superlattices: realization of gapless insulating phases
We investigate Luttinger Liquid superlattices, a periodic structure composed
of two kinds of one-dimensional systems of interacting electrons. We calculate
several properties of the low-energy sector: the effective charge and spin
velocities, the compressibility, various correlation functions, the Landauer
conductance and the Drude weight. The low-energy properties are subsumed into
effective parameters, much like homogeneous one-dimensional systems. A generic
result is the weighted average nature of these parameters, in proportion to the
spatial extent of the underlying subunits, pointing to the possibility of
``engineered'' structures. As a specific realization, we consider a
one-dimensional Hubbard superlattice, which consists of a periodic arrangement
of two long Hubbard chains with different coupling constants and different
hopping amplitudes. This system exhibits a rich phase diagram with several
phases, both metallic and insulating. We have found that gapless insulating
phases are present over a wide range of parameters.Comment: 16 pages, 15 figures, RevTeX
Coherent State Path Integrals in the Weyl Representation
We construct a representation of the coherent state path integral using the
Weyl symbol of the Hamiltonian operator. This representation is very different
from the usual path integral forms suggested by Klauder and Skagerstan in
\cite{Klau85}, which involve the normal or the antinormal ordering of the
Hamiltonian. These different representations, although equivalent quantum
mechanically, lead to different semiclassical limits. We show that the
semiclassical limit of the coherent state propagator in Weyl representation is
involves classical trajectories that are independent on the coherent states
width. This propagator is also free from the phase corrections found in
\cite{Bar01} for the two Klauder forms and provides an explicit connection
between the Wigner and the Husimi representations of the evolution operator.Comment: 23 page
Lorentz-violating nonminimal coupling contributions in mesonic hydrogen atoms and generation of photon higher-order derivative terms
We have studied the contributions of Lorentz-violating CPT-odd and CPT-even
nonminimal couplings to the energy spectrum of the mesonic hydrogen and the
higher-order radiative corrections to the effective action of the photon sector
of a Lorentz-violating version of the scalar electrodynamics. By considering
the complex scalar field describes charged mesons (pion or kaon), the
non-relativistic limit of the model allows to attain upper-bounds by analyzing
its contribution to the mesonic hydrogen energy. By using the experimental data
for the strong correction shift and the pure QED transitions , the best upper-bound for the CPT-odd coupling is
and for the CPT-even one is
. Besides, the CPT-odd radiative correction to the
photon action is a dimension-5 operator which looks like a higher-order
Carroll-Field-Jackiw term. The CPT-even radiative contribution to the photon
effective action is a dimension-6 operator which would be a higher-order
derivative version of the minimal CPT-even term of the standard model
extension
Tecnologia para biodegradação da casca de coco sem gerar outros resÃduos.
bitstream/CPATC/19770/1/f_07_2007.pdfExiste o documento impresso
Tecnologia para produção orgância de cenoura consorciada com alface em Sergipe.
bitstream/CPATC/19935/1/ct-50.pd
Tecnologia para biodegradação da casca de coco seco e de outros resÃduos do coqueiro.
bitstream/item/158629/1/ct-46.pd
Ising Spin Glass in a Transverse Magnetic Field
We study the three-dimensional quantum Ising spin glass in a transverse
magnetic field following the evolution of the bond probability distribution
under Renormalisation Group transformations. The phase diagram (critical
temperature {\em vs} transverse field ) we obtain shows a finite
slope near , in contrast with the infinite slope for the pure case. Our
results compare very well with the experimental data recently obtained for the
dipolar Ising spin glass LiHoYF, in a transverse field.
This indicates that this system is more apropriately described by a model with
short range interactions than by an equivalent Sherrington-Kirkpatrick model in
a transverse field.Comment: 7 pages, RevTeX3, Nota Cientifica PUC-Rio 23/9
Fluctuating local moments, itinerant electrons and the magnetocaloric effect: the compositional hypersensitivity of FeRh
We describe an ab-initio Disordered Local Moment Theory for materials with
quenched static compositional disorder traversing first order magnetic phase
transitions. It accounts quantitatively for metamagnetic changes and the
magnetocaloric effect. For perfect stoichiometric B2-ordered FeRh, we calculate
the transition temperature of the ferromagnetic-antiferromagnetic transition to
be 495K and a maximum isothermal entropy change in 2 Tesla of J~K~kg. A large (40\%) component of is
electronic. The transition results from a fine balance of competing electronic
effects which is disturbed by small compositional changes - e.g. swapping just
2\% Fe of `defects' onto the Rh sublattice makes drop by 290K. This
hypersensitivity explains the narrow compositional range of the transition and
impurity doping effects.Comment: 11 pages, 4 figure
- …