28,648 research outputs found

    Flavour changing strong interaction effects on top quark physics at the LHC

    Full text link
    We perform a model independent analysis of the flavour changing strong interaction vertices relevant to the LHC. In particular, the contribution of dimension six operators to single top production in various production processes is discussed, together with possible hints for identifying signals and setting bounds on physics beyond the standard model.Comment: Authors corrections (references added

    Wigner-Moyal description of free variable mass Klein-Gordon fields

    Full text link
    A system of coupled kinetic transport equations for the Wigner distributions of a free variable mass Klein-Gordon field is derived. This set of equations is formally equivalent to the full wave equation for electromagnetic waves in nonlinear dispersive media, thus allowing for the description of broadband radiation-matter interactions and the associated instabilities. The standard results for the classical wave action are recovered in the short wavelength limit of the generalized Wigner-Moyal formalism for the wave equation.Comment: 9 pages, accepted for publication in Journal of Mathematical Physic

    Measurement of the electron drift velocity for directional dark matter detectors

    Full text link
    Three-dimensional track reconstruction is a key issue for directional Dark Matter detection. It requires a precise knowledge of the electron drift velocity. Magboltz simulations are known to give a good evaluation of this parameter. However, large TPC operated underground on long time scale may be characterized by an effective electron drift velocity that may differ from the value evaluated by simulation. In situ measurement of this key parameter is hence a way to avoid bias in the 3D track reconstruction. We present a dedicated method for the measurement of the electron drift velocity with the MIMAC detector. It is tested on two gas mixtures : CF4\rm CF_4 and CF4+CHF3\rm CF_4+CHF_3. We also show that adding CHF3\rm CHF_3 allows us to lower the electron drift velocity while keeping almost the same Fluorine content of the gas mixture.Comment: Proceedings of the 4th international conference on Directional Detection of Dark Matter (CYGNUS 2013), 10-12 June 2013, Toyama, Japa

    In situ measurement of the electron drift velocity for upcoming directional Dark Matter detectors

    Full text link
    Three-dimensional track reconstruction is a key issue for directional Dark Matter detection and it requires a precise knowledge of the electron drift velocity. Magboltz simulations are known to give a good evaluation of this parameter. However, large TPC operated underground on long time scale may be characterized by an effective electron drift velocity that may differ from the value evaluated by simulation. In situ measurement of this key parameter is hence needed as it is a way to avoid bias in the 3D track reconstruction. We present a dedicated method for the measurement of the electron drift velocity with the MIMAC detector. It is tested on two gas mixtures: CF4 and CF4 + CHF3. The latter has been chosen for the MIMAC detector as we expect that adding CHF3 to pure CF4 will lower the electron drift velocity. This is a key point for directional Dark Matter as the track sampling along the drift field will be improved while keeping almost the same Fluorine content of the gas mixture. We show that the drift velocity at 50 mbar is reduced by a factor of about 5 when adding 30% of CHF3.Comment: 19 pages, 14 figures. Minor corrections, matches published version in JINS

    MIMAC : A micro-tpc matrix for directional detection of dark matter

    Full text link
    Directional detection of non-baryonic Dark Matter is a promising search strategy for discriminating WIMP events from background. However, this strategy requires both a precise measurement of the energy down to a few keV and 3D reconstruction of tracks down to a few mm. To achieve this goal, the MIMAC project has been developed. It is based on a gaseous micro-TPC matrix, filled with CF4 and CHF3. The first results on low energy nuclear recoils (H, F) obtained with a low mono-energetic neutron field are presented. The discovery potential of this search strategy is discussed and illustrated by a realistic case accessible to MIMAC.Comment: 6 pages, Proc. of the fifth international symposium on large TPCs for low energy rare event detection, Paris, France, Dec. 2010. To appear in Journal of Physic

    Conservation of Orbital Angular Momentum in Stimulated Down-Conversion

    Get PDF
    We report on an experiment demonstrating the conservation of orbital angular momentum in stimulated down-conversion. The orbital angular momentum is not transferred to the individual beams of the spontaneous down-conversion, but it is conserved when twin photons are taken individually. We observe the conservation law for an individual beam of the down-conversion through cavity-free stimulated emission.Comment: Submitted for publication in Phys. Rev. Let

    Diffraction and an infrared finite gluon propagator

    Get PDF
    We discuss some phenomenological applications of an infrared finite gluon propagator characterized by a dynamically generated gluon mass. In particular we compute the effect of the dynamical gluon mass on pppp and pˉp{\bar{p}}p diffractive scattering. We also show how the data on γp\gamma p photoproduction and hadronic γγ\gamma \gamma reactions can be derived from the pppp and pˉp\bar{p}p forward scattering amplitudes by assuming vector meson dominance and the additive quark model.Comment: 4 pages, 7 figures, added references and figures, changed structure. Contribution to Proceedings of XVIIIth Reuniao de Trabalho sobre Interacoes Hadronicas, Sao Paulo, Brazil, 22-24 May, 200

    Magnetic Properties of the Metamagnet Ising Model in a three-dimensional Lattice in a Random and Uniform Field

    Full text link
    By employing the Monte Carlo technique we study the behavior of Metamagnet Ising Model in a random field. The phase diagram is obtained by using the algorithm of Glaubr in a cubic lattice of linear size LL with values ranging from 16 to 42 and with periodic boundary conditions.Comment: 4 pages, 6 figure
    corecore