8,156 research outputs found

    Microscopic phenomena and a modern approach to turbulence

    Get PDF
    The use of an arc driven shock tube as a technique in the study of turbulence and evidence to support a kinetic theory of turbulence are described. Topics covered include: (1) reaction rate distortion in turbulent flow; (2) turbulent bursts in a shock tube; (3) driver gas flow with fluctuations; (4) improving the Mach number capabilities of arc driver shock tubes; and (5) resonant absorption in an argon plasma at thermal equilibrium

    Next-to-next-to-leading order fits to CCFR'97 xF3xF_3 data and infrared renormalons

    Get PDF
    We briefly summarize the outcomes of our recent improved fits to the experimental data of CCFR collaboration for xF3xF_3 structure function of νN\nu N deep-inelastic scattering at the next-to-next-to-leading order. Special attention is paid to the extraction of αs(MZ)\alpha_s(M_Z) and the parameter of the infrared renormalon model for 1/Q21/Q^2-correction at different orders of perturbation theory. The results can be of interest for planning similar studies using possible future data of Neutrino Factories.Comment: 3 pages, presented at WG3 of 4th NuFact'02 Workshop, London 1-6 July, 200

    Cylindrically symmetric spinning Brans-Dicke spacetimes with closed timelike curves

    Get PDF
    We present here three new solutions of Brans-Dicke theory for a stationary geometry with cylindrical symmetry in the presence of matter in rigid rotation with Tμμ0T^\mu_\mu\neq 0. All the solutions have eternal closed timelike curves in some region of the spacetime, the size of which depends on ω\omega. Moreover, two of them do not go over a solution of general relativity in the limit ω\omega \to \infty.Comment: revtex, 10 pages, 1 figure in p

    Characterization of the LysR-type transcriptional regulator YcjZ-like from Xylella fastidiosa overexpressed in Escherichia coli

    Get PDF
    AbstractThe Xylella fastidiosa 9a5c strain is a xylem-limited phytopathogen that is the causal agent of citrus variegated chlorosis (CVC). This bacterium is able to form a biofilm and occlude the xylem vessels of susceptible plants, which leads to significant agricultural and economic losses. Biofilms are associated with bacterial pathogenicity because they are very resistant to antibiotics and other metal-based chemicals that are used in agriculture. The X. fastidiosa YcjZ-like (XfYcjZ-like) protein belongs to the LysR-type transcriptional regulator (LTTR) family and is involved in various cellular functions that range from quorum sensing to bacterial survival. In the present study, we report the cloning, expression and purification of XfYcjZ-like, which was overexpressed in Escherichia coli. The secondary folding of the recombinant and purified protein was assessed by circular dichroism, which revealed that XfYcjZ-like contains a typical α/β fold. An initial hydrodynamic characterization showed that XfYcjZ-like is a globular tetramer in solution. In addition, using a polyclonal antibody against XfYcjZ-like, we assessed the expression profile of this protein during the different developmental phases of X. fastidiosa in in vitro cultivated biofilm cells and demonstrated that XfYcjZ-like is upregulated in planktonic cells in response to a copper shock treatment. Finally, the ability of XfYcjZ-like to interact with its own predicted promoter was confirmed in vitro, which is a typical feature of LysR. Taken together, our findings indicated that the XfYcjZ-like protein is involved in both the organization of the architecture and the maturation of the bacterial biofilm and that it is responsive to oxidative stress

    Stem, root, and older leaf N:P ratios are more responsive indicators of soil nutrient availability than new foliage

    Get PDF
    Author Posting. © Ecological Society of America, 2014. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecology 95 (2014): 2062–2068, doi:10.1890/13-1671.1.Foliar nitrogen to phosphorus (N:P) ratios are widely used to indicate soil nutrient availability and limitation, but the foliar ratios of woody plants have proven more complicated to interpret than ratios from whole biomass of herbaceous species. This may be related to tissues in woody species acting as nutrient reservoirs during active growth, allowing maintenance of optimal N:P ratios in recently produced, fully expanded leaves (i.e., “new” leaves, the most commonly sampled tissue). Here we address the hypothesis that N:P ratios of newly expanded leaves are less sensitive indicators of soil nutrient availability than are other tissue types in woody plants. Seedlings of five naturally established tree species were harvested from plots receiving two years of fertilizer treatments in a lowland tropical forest in the Republic of Panama. Nutrient concentrations were determined in new leaves, old leaves, stems, and roots. For stems and roots, N:P ratios increased after N addition and decreased after P addition, and trends were consistent across all five species. Older leaves also showed strong responses to N and P addition, and trends were consistent for four of five species. In comparison, overall N:P ratio responses in new leaves were more variable across species. These results indicate that the N:P ratios of stems, roots, and older leaves are more responsive indicators of soil nutrient availability than are those of new leaves. Testing the generality of this result could improve the use of tissue nutrient ratios as indices of soil nutrient availability in woody plants.Data are from Santiago et al. (2012), which was supported by a grant from the Andrew W. Mellon Foundation to S. J. Wright, a Smithsonian Institute Scholarly Studies grant to S. J. Wright and J. B. Yavitt, and a University of California Regent’s Faculty Fellowship to L. S. Santiago. L. A. Schreeg was partially supported through a Marine Biological Laboratory-Brown University SEED grant to Z. Cardon, S. Porder, and L. A. Schreeg
    corecore