196 research outputs found

    Surface Phenotype and Functionality of WNV Specific T Cells Differ with Age and Disease Severity

    Get PDF
    West Nile virus (WNV) infection can result in severe neuroinvasive disease, particularly in persons with advanced age. As rodent models demonstrate that T cells play an important role in limiting WNV infection, and strong T cell responses to WNV have been observed in humans, we postulated that inadequate antiviral T cell immunity was involved in neurologic sequelae and the more severe outcomes associated with age. We previously reported the discovery of six HLA-A*0201 restricted WNV peptide epitopes, with the dominant T cell targets in naturally infected individuals being SVG9 (Env) and SLF9 (NS4b). Here, memory phenotype and polyfunctional CD8+ T cell responses to these dominant epitopes were assessed in 40 WNV seropositive patients displaying diverse clinical symptoms. The patients' PBMC were stained with HLA-I multimers loaded with the SVG9 and SLF9 epitopes and analyzed by multicolor flow cytometry. WNV-specific CD8+ T cells were found in peripheral blood several months post infection. The number of WNV-specific T cells in older individuals was the same, if not greater, than in younger members of the cohort. WNV-specific T cells were predominantly monofunctional for CD107a, MIP-1Ξ², TNFΞ±, IL-2, or IFNΞ³. When CD8+ T cell responses were stratified by disease severity, an increased number of terminally differentiated, memory phenotype (CD45RA+ CD27βˆ’ CCR7βˆ’ CD57+) T cells were detected in patients suffering from viral neuroinvasion. In conclusion, T cells of a terminally differentiated/cytolytic profile are associated with neuroinvasion and, regardless of age, monofunctional T cells persist following infection. These data provide the first indication that particular CD8+ T cell phenotypes are associated with disease outcome following WNV infection

    N-terminal Domain of Prion Protein Directs Its Oligomeric Association

    Get PDF
    The self-association of prion protein (PrP) is a critical step in the pathology of prion diseases. It is increasingly recognized that small non-fibrillar ?-sheet-rich oligomers of PrP may be of crucial importance in the prion disease process. Here, we characterize the structure of a well defined ?-sheet-rich oligomer, containing ?12 PrP molecules, and often enclosing a central cavity, formed using full-length recombinant PrP. The N-terminal region of prion protein (residues 23-90) is required for the formation of this distinct oligomer; a truncated form comprising residues 91-231 forms a broad distribution of aggregated species. No infectivity or toxicity was found using cell and animal model systems. This study demonstrates that examination of the full repertoire of conformers and assembly states that can be accessed by PrP under specific experimental conditions should ideally be done using the full-length protein

    A Differentiation-Based Phylogeny of Cancer Subtypes

    Get PDF
    Histopathological classification of human tumors relies in part on the degree of differentiation of the tumor sample. To date, there is no objective systematic method to categorize tumor subtypes by maturation. In this paper, we introduce a novel computational algorithm to rank tumor subtypes according to the dissimilarity of their gene expression from that of stem cells and fully differentiated tissue, and thereby construct a phylogenetic tree of cancer. We validate our methodology with expression data of leukemia, breast cancer and liposarcoma subtypes and then apply it to a broader group of sarcomas. This ranking of tumor subtypes resulting from the application of our methodology allows the identification of genes correlated with differentiation and may help to identify novel therapeutic targets. Our algorithm represents the first phylogeny-based tool to analyze the differentiation status of human tumors

    EXPLORE: A Prospective, Multinational, Natural History Study of Patients with Acute Hepatic Porphyria with Recurrent Attacks

    Get PDF
    BACKGROUND AND AIMS: Acute hepatic porphyria comprises a group of rare genetic diseases caused by mutations in genes involved in heme biosynthesis. Patients can experience acute neurovisceral attacks, debilitating chronic symptoms, and long-term complications. There is a lack of multinational, prospective data characterizing the disease and current treatment practices in severely affected patients. APPROACH AND RESULTS: EXPLORE is a prospective, multinational, natural history study characterizing disease activity and clinical management in patients with acute hepatic porphyria who experience recurrent attacks. Eligible patients had a confirmed acute hepatic porphyria diagnosis and had experienced β‰₯3 attacks in the prior 12 months or were receiving prophylactic treatment. A total of 112 patients were enrolled and followed for at least 6 months. In the 12 months before the study, patients reported a median (range) of 6 (0-52) acute attacks, with 52 (46%) patients receiving hemin prophylaxis. Chronic symptoms were reported by 73 (65%) patients, with 52 (46%) patients experiencing these daily. During the study, 98 (88%) patients experienced a total of 483 attacks, 77% of which required treatment at a health care facility and/or hemin administration (median [range] annualized attack rate 2.0 [0.0-37.0]). Elevated levels of hepatic Ξ΄-aminolevulinic acid synthase 1 messenger ribonucleic acid levels, Ξ΄-aminolevulinic acid, and porphobilinogen compared with the upper limit of normal in healthy individuals were observed at baseline and increased further during attacks. Patients had impaired quality of life and increased health care utilization. CONCLUSIONS: Patients experienced attacks often requiring treatment in a health care facility and/or with hemin, as well as chronic symptoms that adversely influenced day-to-day functioning. In this patient group, the high disease burden and diminished quality of life highlight the need for novel therapies. (Hepatology 2020;71:1546-1558)

    Unsupervised assessment of microarray data quality using a Gaussian mixture model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quality assessment of microarray data is an important and often challenging aspect of gene expression analysis. This task frequently involves the examination of a variety of summary statistics and diagnostic plots. The interpretation of these diagnostics is often subjective, and generally requires careful expert scrutiny.</p> <p>Results</p> <p>We show how an unsupervised classification technique based on the Expectation-Maximization (EM) algorithm and the naΓ―ve Bayes model can be used to automate microarray quality assessment. The method is flexible and can be easily adapted to accommodate alternate quality statistics and platforms. We evaluate our approach using Affymetrix 3' gene expression and exon arrays and compare the performance of this method to a similar supervised approach.</p> <p>Conclusion</p> <p>This research illustrates the efficacy of an unsupervised classification approach for the purpose of automated microarray data quality assessment. Since our approach requires only unannotated training data, it is easy to customize and to keep up-to-date as technology evolves. In contrast to other "black box" classification systems, this method also allows for intuitive explanations.</p

    EXPLORE: A prospective, multinational natural history study of patients with acute hepatic porphyria with recurrent attacks

    Get PDF
    BACKGROUND AND AIMS: Acute hepatic porphyria comprises a group of rare genetic diseases caused by mutations in genes involved in heme biosynthesis. Patients can experience acute neurovisceral attacks, debilitating chronic symptoms, and long-term complications. There is a lack of multinational, prospective data characterizing the disease and current treatment practices in severely affected patients. APPROACH AND RESULTS: EXPLORE is a prospective, multinational, natural history study characterizing disease activity and clinical management in patients with acute hepatic porphyria who experience recurrent attacks. Eligible patients had a confirmed acute hepatic porphyria diagnosis and had experienced β‰₯3 attacks in the prior 12 months or were receiving prophylactic treatment. A total of 112 patients were enrolled and followed for at least 6 months. In the 12 months before the study, patients reported a median (range) of 6 (0-52) acute attacks, with 52 (46%) patients receiving hemin prophylaxis. Chronic symptoms were reported by 73 (65%) patients, with 52 (46%) patients experiencing these daily. During the study, 98 (88%) patients experienced a total of 483 attacks, 77% of which required treatment at a health care facility and/or hemin administration (median [range] annualized attack rate 2.0 [0.0-37.0]). Elevated levels of hepatic Ξ΄-aminolevulinic acid synthase 1 messenger ribonucleic acid levels, Ξ΄-aminolevulinic acid, and porphobilinogen compared with the upper limit of normal in healthy individuals were observed at baseline and increased further during attacks. Patients had impaired quality of life and increased health care utilization. CONCLUSIONS: Patients experienced attacks often requiring treatment in a health care facility and/or with hemin, as well as chronic symptoms that adversely influenced day-to-day functioning. In this patient group, the high disease burden and diminished quality of life highlight the need for novel therapies. (Hepatology 2020;71:1546-1558)

    Reduction of Natural Killer but Not Effector CD8 T Lymphoyctes in Three Consecutive Cases of Severe/Lethal H1N1/09 Influenza A Virus Infection

    Get PDF
    Background: The cause of severe disease in some patients infected with pandemic influenza A virus is unclear. Methodology/Principal Findings: We present the cellular immunology profile in the blood, and detailed clinical (and postmortem) findings of three patients with rapidly progressive infection, including a pregnant patient who died. The striking finding is of reduction in natural killer (NK) cells but preservation of activated effector CD8 T lymphocytes; with viraemia in the patient who had no NK cells. Comparison with control groups suggests that the reduction of NK cells is unique to these severely ill patients. Conclusion/Significance: Our report shows markedly reduced NK cells in the three patients that we sampled and raises the hypothesis that NK may have a more significant role than T lymphocytes in controlling viral burden when the host is confronted with a new influenza A virus subtype

    Mycobacterium tuberculosis peptides presented by HLA-E molecules are targets for human CD8 T-cells with cytotoxic as well as regulatory activity

    Get PDF
    Tuberculosis (TB) is an escalating global health problem and improved vaccines against TB are urgently needed. HLA-E restricted responses may be of interest for vaccine development since HLA-E displays very limited polymorphism (only 2 coding variants exist), and is not down-regulated by HIV-infection. The peptides from Mycobacterium tuberculosis (Mtb) potentially presented by HLA-E molecules, however, are unknown. Here we describe human T-cell responses to Mtb-derived peptides containing predicted HLA-E binding motifs and binding-affinity for HLA-E. We observed CD8(+) T-cell proliferation to the majority of the 69 peptides tested in Mtb responsive adults as well as in BCG-vaccinated infants. CD8(+) T-cells were cytotoxic against target-cells transfected with HLA-E only in the presence of specific peptide. These T cells were also able to lyse M. bovis BCG infected, but not control monocytes, suggesting recognition of antigens during mycobacterial infection. In addition, peptide induced CD8(+) T-cells also displayed regulatory activity, since they inhibited T-cell proliferation. This regulatory activity was cell contact-dependent, and at least partly dependent on membrane-bound TGF-beta. Our results significantly increase our understanding of the human immune response to Mtb by identification of CD8(+) T-cell responses to novel HLA-E binding peptides of Mtb, which have cytotoxic as well as immunoregulatory activity

    Evaluating Research and Impact: A Bibliometric Analysis of Research by the NIH/NIAID HIV/AIDS Clinical Trials Networks

    Get PDF
    Evaluative bibliometrics uses advanced techniques to assess the impact of scholarly work in the context of other scientific work and usually compares the relative scientific contributions of research groups or institutions. Using publications from the National Institute of Allergy and Infectious Diseases (NIAID) HIV/AIDS extramural clinical trials networks, we assessed the presence, performance, and impact of papers published in 2006–2008. Through this approach, we sought to expand traditional bibliometric analyses beyond citation counts to include normative comparisons across journals and fields, visualization of co-authorship across the networks, and assess the inclusion of publications in reviews and syntheses. Specifically, we examined the research output of the networks in terms of the a) presence of papers in the scientific journal hierarchy ranked on the basis of journal influence measures, b) performance of publications on traditional bibliometric measures, and c) impact of publications in comparisons with similar publications worldwide, adjusted for journals and fields. We also examined collaboration and interdisciplinarity across the initiative, through network analysis and modeling of co-authorship patterns. Finally, we explored the uptake of network produced publications in research reviews and syntheses. Overall, the results suggest the networks are producing highly recognized work, engaging in extensive interdisciplinary collaborations, and having an impact across several areas of HIV-related science. The strengths and limitations of the approach for evaluation and monitoring research initiatives are discussed
    • …
    corecore