2,861 research outputs found
Recommended from our members
Magnetic Resonance Imaging of the Elbow: A Structured Approach
Context: The elbow is a complex joint and commonly injured in athletes. Evaluation of the elbow by magnetic resonance imaging (MRI) is an important adjunct to the physical examination. To facilitate accurate diagnosis, a concise structured approach to evaluation of the elbow by MRI is presented. Evidence Acquisition: A PubMed search was performed using the terms elbow and MR imaging. No limits were set on the range of years searched. Articles were reviewed for relevance with an emphasis of the MRI appearance of normal anatomy and common pathology of the elbow. Results: The spectrum of common elbow disorders varies from obvious acute fractures to chronic overuse injuries whose imaging manifestations can be subtle. MRI evaluation should include bones; lateral, medial, anterior, and posterior muscle groups; the ulnar and radial collateral ligaments; as well as nerves, synovium, and bursae. Special attention should be paid to the valgus extension overload syndrome and the MRI appearance of associated injuries when evaluating throwing athletes. Conclusion: MRI evaluation of the elbow should follow a structured approach to facilitate thoroughness, accuracy, and speed. Such an approach should cover bone, cartilage, muscle, tendons, ligaments, synovium, bursae, and nerves
Determination of wind tunnel constraint effects by a unified pressure signature method. Part 2: Application to jet-in-crossflow
The development of an improved jet-in-crossflow model for estimating wind tunnel blockage and angle-of-attack interference is described. Experiments showed that the simpler existing models fall seriously short of representing far-field flows properly. A new, vortex-source-doublet (VSD) model was therefore developed which employs curved trajectories and experimentally-based singularity strengths. The new model is consistent with existing and new experimental data and it predicts tunnel wall (i.e. far-field) pressures properly. It is implemented as a preprocessor to the wall-pressure-signature-based tunnel interference predictor. The supporting experiments and theoretical studies revealed some new results. Comparative flow field measurements with 1-inch "free-air" and 3-inch impinging jets showed that vortex penetration into the flow, in diameters, was almost unaltered until 'hard' impingement occurred. In modeling impinging cases, a 'plume redirection' term was introduced which is apparently absent in previous models. The effects of this term were found to be very significant
Determination of wind tunnel constraint effects by a unified pressure signature method. Part 1: Applications to winged configurations
A new, fast, non-iterative version of the "Wall Pressure Signature Method" is described and used to determine blockage and angle-of-attack wind tunnel corrections for highly-powered jet-flap models. The correction method is complemented by the application of tangential blowing at the tunnel floor to suppress flow breakdown there, using feedback from measured floor pressures. This tangential blowing technique was substantiated by subsequent flow investigations using an LV. The basic tests on an unswept, knee-blown, jet flapped wing were supplemented to include the effects of slat-removal, sweep and the addition of unflapped tips. C sub mu values were varied from 0 to 10 free-air C sub l's in excess of 18 were measured in some cases. Application of the new methods yielded corrected data which agreed with corresponding large tunnel "free air" resuls to within the limits of experimental accuracy in almost all cases. A program listing is provided, with sample cases
Determinants of World Demand for U.S. Corn Seeds: The Role of Trade Costs
The United States is a large net exporter of corn seeds. Seed trade, including that of corn, has been expanding, but its determinants are not well understood. This paper econometrically investigates the determinants of world demand for U.S. corn seeds with a detailed analysis of trade costs impeding export flows to various markets, including costs associated with distance, tariffs, and sanitary and phytosanitary (SPS) regulations. The analysis relies on a gravity-like model based on an explicit specification of derived demand for seed by foreign corn producers, estimated based on data from 48 countries and for the years 1989 to 2004. An SPS count variable is incorporated as a shifter in the unit cost of seeds faced by foreign users. A sample selection framework is used to account for the determination of which trade flows are positive. All trade costs matter and have had a negative impact on U.S. corn seed exports. Tariffs matter most, followed by distance and SPS measures. �
Privacy and Truthful Equilibrium Selection for Aggregative Games
We study a very general class of games --- multi-dimensional aggregative
games --- which in particular generalize both anonymous games and weighted
congestion games. For any such game that is also large, we solve the
equilibrium selection problem in a strong sense. In particular, we give an
efficient weak mediator: a mechanism which has only the power to listen to
reported types and provide non-binding suggested actions, such that (a) it is
an asymptotic Nash equilibrium for every player to truthfully report their type
to the mediator, and then follow its suggested action; and (b) that when
players do so, they end up coordinating on a particular asymptotic pure
strategy Nash equilibrium of the induced complete information game. In fact,
truthful reporting is an ex-post Nash equilibrium of the mediated game, so our
solution applies even in settings of incomplete information, and even when
player types are arbitrary or worst-case (i.e. not drawn from a common prior).
We achieve this by giving an efficient differentially private algorithm for
computing a Nash equilibrium in such games. The rates of convergence to
equilibrium in all of our results are inverse polynomial in the number of
players . We also apply our main results to a multi-dimensional market game.
Our results can be viewed as giving, for a rich class of games, a more robust
version of the Revelation Principle, in that we work with weaker informational
assumptions (no common prior), yet provide a stronger solution concept (ex-post
Nash versus Bayes Nash equilibrium). In comparison to previous work, our main
conceptual contribution is showing that weak mediators are a game theoretic
object that exist in a wide variety of games -- previously, they were only
known to exist in traffic routing games
Role of glucose in enhancing life and potency of Cirrhinus mrigala spermatozoa during cryopreservation
Cryopreservation of fish gametes is an emerging technology and breeding with cryopreserved gametes is advancement in fish seed production. Success of cryopreservation is evaluated by the post - thaw motility of the spermatozoa, an for which energy is required. Cryopreservation is known to cause changes in the seminal plasma that would alter the energy supply for the motility of the spermatozoa. Therefore, energy supplementation is found to be useful during cryopreservation. Cirrhinus mrigala spermatozoa were cryopreserved along with glucose as a co-cryoprotectant after 1:100 dilutions with 0.85% physiological saline as extender and Dimethyl Sulfoxide (DMSO) as cryoprotectant (85:15). The diluents contained glucose at four different concentrations, viz., T1 (0.25%), T2 (0.5%), T3 (0.75%) and T4 (1%). The diluted milt was equilibrated for 10 min at 5? C and loaded into 0.25 ml straws. The loaded straws were then frozen with LN2 vapour for 5 min and immersed in liquid nitrogen. Observations were made once in 7 days for 42 days on motility parameters based on which the duration, score, pattern and percentage were determined. The spermatozoa cryopreserved with glucose at 0.5% concentration showed the highest motility duration of 204±3.6 s whereas Control group showed motility duration of only 83.33± 4.5 s on 42nd day. The difference in motility duration was statistically significant (P>0.025).The present study revealed the benefits of adding glucose a t0.5% during cryopreservation as it could help in maintaining the motility duration and survival of spermatozoa
A Component-oriented Framework for Autonomous Agents
The design of a complex system warrants a compositional methodology, i.e.,
composing simple components to obtain a larger system that exhibits their
collective behavior in a meaningful way. We propose an automaton-based paradigm
for compositional design of such systems where an action is accompanied by one
or more preferences. At run-time, these preferences provide a natural fallback
mechanism for the component, while at design-time they can be used to reason
about the behavior of the component in an uncertain physical world. Using
structures that tell us how to compose preferences and actions, we can compose
formal representations of individual components or agents to obtain a
representation of the composed system. We extend Linear Temporal Logic with two
unary connectives that reflect the compositional structure of the actions, and
show how it can be used to diagnose undesired behavior by tracing the
falsification of a specification back to one or more culpable components
Magneto-optics of massive Dirac fermions in bulk Bi2Se3
We report on magneto-optical studies of Bi2Se3, a representative member of
the 3D topological insulator family. Its electronic states in bulk are shown to
be well described by a simple Dirac-type Hamiltonian for massive particles with
only two parameters: the fundamental bandgap and the band velocity. In a
magnetic field, this model implies a unique property - spin splitting equal to
twice the cyclotron energy: Es = 2Ec. This explains the extensive
magneto-transport studies concluding a fortuitous degeneracy of the spin and
orbital split Landau levels in this material. The Es = 2Ec match differentiates
the massive Dirac electrons in bulk Bi2Se3 from those in quantum
electrodynamics, for which Es = Ec always holds.Comment: 5 pages, 3 figures and Supplementary materials, to be published in
Physical Review Letter
Molten Salt Thermal Energy Storage Systems
The feasibility of storing thermal energy at temperatures of 450 C to 535 C in the form of latent heat of fusion was examined for over 30 inorganic salts and salt mixtures. Alkali carbonate mixtures were chosen as phase-change storage materials in this temperature range because of their relatively high storage capacity and thermal conductivity, moderate cost, low volumetric expansion upon melting, low corrosivity, and good chemical stability. Means of improving heat conduction through the solid salt were explored
High Fidelity System Simulation of Multiple Components in Support of the UEET Program
The High Fidelity System Simulation effort has addressed various important objectives to enable additional capability within the NPSS framework. The scope emphasized High Pressure Turbine and High Pressure Compressor components. Initial effort was directed at developing and validating intermediate fidelity NPSS model using PD geometry and extended to high-fidelity NPSS model by overlaying detailed geometry to validate CFD against rig data. Both "feedforward" and feedback" approaches of analysis zooming was employed to enable system simulation capability in NPSS. These approaches have certain benefits and applicability in terms of specific applications "feedback" zooming allows the flow-up of information from high-fidelity analysis to be used to update the NPSS model results by forcing the NPSS solver to converge to high-fidelity analysis predictions. This apporach is effective in improving the accuracy of the NPSS model; however, it can only be used in circumstances where there is a clear physics-based strategy to flow up the high-fidelity analysis results to update the NPSS system model. "Feed-forward" zooming approach is more broadly useful in terms of enabling detailed analysis at early stages of design for a specified set of critical operating points and using these analysis results to drive design decisions early in the development process
- …
